• The impact of dams on floodplain geomorphology: are there any, should we care, and what should we do about it?

      Marren, Philip M.; Grove, James R.; Webb, J. Angus; Stewardson, Michael J.; University of Melbourne (7th Australian Stream Management Conference / asn events, 2014)
      We undertook a review of the potential for dams to impact floodplain geomorphology, using both a conventional literature review and a systematic review using ‘causal criteria’ analysis. The literature review identified potential impacts on overbank flooding, scour and sedimentation, within-channel bank erosion, meander migration and cutoff frequency, and avulsion characteristics and frequency. The temporal scale of impacts ranged from years and decades, through to millennia. The causal criteria analysis indicated that with the exception of reduced meander migration rates, most impacts had been too poorly documented to be confident of their impact at present. We identify a distinction between ‘passive impacts’ (floodplain disconnection) and ‘active impacts’ (changes in geomorphological processes and functioning). Dams do impact floodplain geomorphology: many of the impacts will be subtle, and over very long timescales (1000s of years), but altered overbank sediment loads have the potential to change patterns of scour and deposition across floodplains. Further research is needed that specifically seeks to identify the impacts of dams on floodplain geomorphology, hydrology-geomorphology-vegetation interactions, and floodplain ecological response. Given the practical constraints on overbank environmental flow releases, there is relatively little that can be done to mitigate dam impacts on floodplain geomorphology. The main options include using within-channel flows to maintain meander migration and partial floodplain connectivity. We suggest that the major action should be that once dams come online, efforts should be made to prevent channel enlargement through scour, channel widening and wood removal, so that geomorphological processes can fully reestablish immediately once the dam ceases to operate.
    • The Potential for Dams to Impact Lowland Meandering River Floodplain Geomorphology

      Marren, Philip M.; Grove, James R.; Webb, J. Angus; Stewardson, Michael J.; University of Melbourne (Hindawi Publishing Corporation, 2014-01-22)
      The majority of the world’s floodplains are dammed. Although some implications of dams for riverine ecology and for river channel morphology are well understood, there is less research on the impacts of dams on floodplain geomorphology. We review studies from dammed and undammed rivers and include influences on vertical and lateral accretion, meander migration and cutoff formation, avulsion, and interactions with floodplain vegetation.The results are synthesized into a conceptual model of the effects of dams on the major geomorphic influences on floodplain development.This model is used to assess the likely consequences of eight damand flow regulation scenarios for floodplain geomorphology. Sediment starvation downstream of dams has perhaps the greatest potential to impact on floodplain development. Such effects will persist further downstream where tributary sediment inputs are relatively low and there is minimal buffering by alluvial sediment stores.We can identify several ways in which floodplains might potentially be affected by dams, with varying degrees of confidence, including a distinction between passive impacts (floodplain disconnection) and active impacts (changes in geomorphological processes and functioning). These active processes are likely to have more serious implications for floodplain function and emphasize both the need for future research and the need for an “environmental sediment regime” to operate alongside environmental flows.