• Higher order numerical methods for solving fractional differential equations

      Yan, Yubin; Pal, Kamal; Ford, Neville J.; University of Chester (Springer, 2013-10-05)
      In this paper we introduce higher order numerical methods for solving fractional differential equations. We use two approaches to this problem. The first approach is based on a direct discretisation of the fractional differential operator: we obtain a numerical method for solving a linear fractional differential equation with order 0 < α < 1. The order of convergence of the numerical method is O(h^(3−α)). Our second approach is based on discretisation of the integral form of the fractional differential equation and we obtain a fractional Adams-type method for a nonlinear fractional differential equation of any order α >0. The order of convergence of the numerical method is O(h^3) for α ≥ 1 and O(h^(1+2α)) for 0 < α ≤ 1 for sufficiently smooth solutions. Numerical examples are given to show that the numerical results are consistent with the theoretical results.