• Space-Time Discontinuous Galerkin Methods for the '\eps'-dependent Stochastic Allen-Cahn Equation with mild noise

      Antonopoulou, Dimitra; Department of Mathematics, University of Chester, UK (Oxford University Press, 2019)
      We consider the $\eps$-dependent stochastic Allen-Cahn equation with mild space- time noise posed on a bounded domain of R^2. The positive parameter $\eps$ is a measure for the inner layers width that are generated during evolution. This equation, when the noise depends only on time, has been proposed by Funaki in [15]. The noise although smooth becomes white on the sharp interface limit as $\eps$ tends to zero. We construct a nonlinear dG scheme with space-time finite elements of general type which are discontinuous in time. Existence of a unique discrete solution is proven by application of Brouwer's Theorem. We first derive abstract error estimates and then for the case of piece-wise polynomial finite elements we prove an error in expectation of optimal order. All the appearing constants are estimated in terms of the parameter $\eps$. Finally, we present a linear approximation of the nonlinear scheme for which we prove existence of solution and optimal error in expectation in piece-wise linear finite element spaces. The novelty of this work is based on the use of a finite element formulation in space and in time in 2+1-dimensional subdomains for a nonlinear parabolic problem. In addition, this problem involves noise. These type of schemes avoid any Runge-Kutta type discretization for the evolutionary variable and seem to be very effective when applied to equations of such a difficulty.
    • Numerical analysis of a two-parameter fractional telegraph equation

      Ford, Neville; Rodrigues, M.Manuela; Xiao, Jingyu; Yan, Yubin; University of Chester, Harbin Institute of Technology, University of Aveiro, Campus Universitario de Santiago (Elsevier, 2013-09-26)
      In this paper we consider the two-parameter fractional telegraph equation of the form $$-\, ^CD_{t_0^+}^{\alpha+1} u(t,x) + \, ^CD_{x_0^+}^{\beta+1} u (t,x)- \, ^CD_{t_0^+}^{\alpha}u (t,x)-u(t,x)=0.$$ Here $\, ^CD_{t_0^+}^{\alpha}$, $\, ^CD_{t_0^+}^{\alpha+1}$, $\, ^CD_{x_0^+}^{\beta+1}$ are operators of the Caputo-type fractional derivative, where $0\leq \alpha < 1$ and $0 \leq \beta < 1$. The existence and uniqueness of the equations are proved by using the Banach fixed point theorem. A numerical method is introduced to solve this fractional telegraph equation and stability conditions for the numerical method are obtained. Numerical examples are given in the final section of the paper.
    • Stabilizing a mathematical model of plant species interaction

      Yan, Yubin; Ekaka-a, Enu-Obari N.; University of Chester, University of Ibadan (Elsevier, 2011-09-03)
      In this paper, we will consider how to stabilize a mathematical model of plant species interaction which is modelled by using Lotka-Volterra system. We first identify the unstable steady states of the system, then we use the feedback control based on the solutions of the Riccati equation to stabilize the linearized system. We further stabilize the nonlinear system by using the feedback controller obtained in the stabilization of the linearized system. We introduce the backward Euler method to approximate the feedback control nonlinear system and obtain the error estimates. Four numerical examples are given which come from the application areas.
    • Stability of a numerical method for a fractional telegraph equation

      Yan, Yubin; Xiao, Jingyu; Ford, Neville; University of Chester, Harbin Institute of Technology (De Gruyter, 2012-03)
      In this paper, we introduce a numerical method for solving the time-space fractional telegraph equations. The numerical method is based on a quadrature formula approach and a stability condition for the numerical method is obtained. Two numerical examples are given and the stability regions are plotted.
    • On hereditary reducibility of 2-monomial matrices over commutative rings

      Bondarenko, Vitaliy M.; Gildea, Joe; Tylyshchak, Alexander; Yurchenko, Natalia; Institute of Mathematic, Kyiv; University of Chester; Uzhgorod National University (Taras Shevchenko National University of Luhansk, 2019)
      A 2-monomial matrix over a commutative ring $R$ is by definition any matrix of the form $M(t,k,n)=\Phi\left(\begin{smallmatrix}I_k&0\\0&tI_{n-k}\end{smallmatrix}\right)$, $0<k<n$, where $t$ is a non-invertible element of $R$, $\Phi$ the compa\-nion matrix to $\lambda^n-1$ and $I_k$ the identity $k\times k$-matrix. In this paper we introduce the notion of hereditary reducibility (for these matrices) and indicate one general condition of the introduced reducibility.
    • A high order numerical method for solving nonlinear fractional differential equation with non-uniform meshes

      Fan, Lili; Yan, Yubin; University of Chester; Lvliang University (Springer Link, 2019-01-18)
      We introduce a high-order numerical method for solving nonlinear fractional differential equation with non-uniform meshes. We first transform the fractional nonlinear differential equation into the equivalent Volterra integral equation. Then we approximate the integral by using the quadratic interpolation polynomials. On the first subinterval $[t_{0}, t_{1}]$, we approximate the integral with the quadratic interpolation polynomials defined on the nodes $t_{0}, t_{1}, t_{2}$ and in the other subinterval $[t_{j}, t_{j+1}], j=1, 2, \dots N-1$, we approximate the integral with the quadratic interpolation polynomials defined on the nodes $t_{j-1}, t_{j}, t_{j+1}$. A high-order numerical method is obtained. Then we apply this numerical method with the non-uniform meshes with the step size $\tau_{j}= t_{j+1}- t_{j}= (j+1) \mu$ where $\mu= \frac{2T}{N (N+1)}$. Numerical results show that this method with the non-uniform meshes has the higher convergence order than the standard numerical methods obtained by using the rectangle and the trapzoid rules with the same non-uniform meshes.
    • New Self-Dual and Formally Self-Dual Codes from Group Ring Constructions

      Dougherty, Steven; Gildea, Joe; Kaya, Abidin; Yildiz, Bahattin; University of Scranton; University of Chester; Sampoerna Academy; University of Chester; Northern Arizona University (American Institute of Mathematical Sciences, 2019)
      In this work, we study construction methods for self-dual and formally self-dual codes from group rings, arising from the cyclic group, the dihedral group, the dicyclic group and the semi-dihedral group. Using these constructions over the rings $_F2 +uF_2$ and $F_4 + uF_4$, we obtain 9 new extremal binary self-dual codes of length 68 and 25 even formally self-dual codes with parameters [72,36,14].
    • Bordered Constructions of Self-Dual Codes from Group Rings and New Extremal Binary Self-Dual Codes

      Dougherty, Steven; Gildea, Joe; Kaya, Abidin; Korban, Adrian; Tylyshchak, Alexander; Yildiz, Bahattin; University of Scranton; University of Chester; Sampoerna Academy; Uzhgorod State University; Northern Arizona University (Elsevier, 2019)
      We introduce a bordered construction over group rings for self-dual codes. We apply the constructions over the binary field and the ring $\F_2+u\F_2$, using groups of orders 9, 15, 21, 25, 27, 33 and 35 to find extremal binary self-dual codes of lengths 20, 32, 40, 44, 52, 56, 64, 68, 88 and best known binary self-dual codes of length 72. In particular we obtain 41 new binary extremal self-dual codes of length 68 from groups of orders 15 and 33 using neighboring and extensions. All the numerical results are tabulated throughout the paper.
    • Optimal convergence rates for semidiscrete finite element approximations of linear space-fractional partial differential equations under minimal regularity assumptions

      Liu, Fang; Liang, Zongqi; Yan, Yubin; Luliang University; Jimei University; University of Chester (Elsevier, 2018-12-17)
      We consider the optimal convergence rates of the semidiscrete finite element approximations for solving linear space-fractional partial differential equations by using the regularity results for the fractional elliptic problems obtained recently by Jin et al. \cite{jinlazpasrun} and Ervin et al. \cite{ervheuroo}. The error estimates are proved by using two approaches. One approach is to apply the duality argument in Johnson \cite{joh} for the heat equation to consider the error estimates for the linear space-fractional partial differential equations. This argument allows us to obtain the optimal convergence rates under the minimal regularity assumptions for the solution. Another approach is to use the approximate solution operators of the corresponding fractional elliptic problems. This argument can be extended to consider more general linear space-fractional partial differential equations. Numerical examples are given to show that the numerical results are consistent with the theoretical results.
    • Data-driven selection and parameter estimation for DNA methylation mathematical models

      Larson, Karen; Zagkos, Loukas; Mc Auley, Mark; Roberts, Jason; Kavallaris, Nikos; Matzavinos, Anastasios; Brown University; University of Chester (Elsevier, 2019-01-10)
      Epigenetics is coming to the fore as a key process which underpins health. In particular emerging experimental evidence has associated alterations to DNA methylation status with healthspan and aging. Mammalian DNA methylation status is maintained by an intricate array of biochemical and molecular processes. It can be argued changes to these fundamental cellular processes ultimately drive the formation of aberrant DNA methylation patterns, which are a hallmark of diseases, such as cancer, Alzheimer's disease and cardiovascular disease. In recent years mathematical models have been used as e ective tools to help advance our understanding of the dynamics which underpin DNA methylation. In this paper we present linear and nonlinear models which encapsulate the dynamics of the molecular mechanisms which de ne DNA methylation. Applying a recently developed Bayesian algorithm for parameter estimation and model selection, we are able to estimate distributions of parameters which include nominal parameter values. Using limited noisy observations, the method also identifed which methylation model the observations originated from, signaling that our method has practical applications in identifying what models best match the biological data for DNA methylation.
    • Data-driven selection and parameter estimation for DNA methylation mathematical models.

      Larson, Karen; Zagkos, Loukas; Mc Auley, Mark; Roberts, Jason; Kavallaris, Nikos I; Matzavinos, Anastasios; email: matzavinos@brown.edu (2019-01-08)
      Epigenetics is coming to the fore as a key process which underpins health. In particular emerging experimental evidence has associated alterations to DNA methylation status with healthspan and aging. Mammalian DNA methylation status is maintained by an intricate array of biochemical and molecular processes. It can be argued changes to these fundamental cellular processes ultimately drive the formation of aberrant DNA methylation patterns, which are a hallmark of diseases, such as cancer, Alzheimer's disease and cardiovascular disease. In recent years mathematical models have been used as effective tools to help advance our understanding of the dynamics which underpin DNA methylation. In this paper we present linear and nonlinear models which encapsulate the dynamics of the molecular mechanisms which define DNA methylation. Applying a recently developed Bayesian algorithm for parameter estimation and model selection, we are able to estimate distributions of parameters which include nominal parameter values. Using limited noisy observations, the method also identified which methylation model the observations originated from, signaling that our method has practical applications in identifying what models best match the biological data for DNA methylation. [Abstract copyright: Copyright © 2019. Published by Elsevier Ltd.]
    • Mathematical models of DNA methylation dynamics: Implications for health and ageing.

      Zagkos, Loukas; email: z.loukas@chester.ac.uk; Auley, Mark Mc; email: m.mcauley@chester.ac.uk; Roberts, Jason; email: j.roberts@chester.ac.uk; Kavallaris, Nikos I; email: n.kavallaris@chester.ac.uk (2018-11-15)
      DNA methylation is a key epigenetic process which has been intimately associated with gene regulation. In recent years growing evidence has associated DNA methylation status with a variety of diseases including cancer, Alzheimer's disease and cardiovascular disease. Moreover, changes to DNA methylation have also recently been implicated in the ageing process. The factors which underpin DNA methylation are complex, and remain to be fully elucidated. Over the years mathematical modelling has helped to shed light on the dynamics of this important molecular system. Although the existing models have contributed significantly to our overall understanding of DNA methylation, they fall short of fully capturing the dynamics of this process. In this paper we develop a linear and nonlinear model which captures more fully the dynamics of the key intracellular events which characterise DNA methylation. In particular the outcomes of our linear model result in gene promoter specific methylation levels which are more biologically plausible than those revealed by previous mathematical models. In addition, our nonlinear model predicts DNA methylation promoter bistability which is commonly observed experimentally. The findings from our models have implications for our current understanding of how changes to the dynamics which underpin DNA methylation affect ageing and health. We also propose how our ideas can be tested in the lab. [Abstract copyright: Copyright © 2018 Elsevier Ltd. All rights reserved.]
    • Theoretical and numerical analysis of unsteady fractional viscoelastic flows in simple geometries.

      Ferras, L. L.; Ford, Neville J.; Morgado, Maria L.; Rebelo, Magda; McKinley, Gareth H.; Nobrega, Joao M.; University of Chester, University of Minho, UTAD, Universidade Nova de Lisboa (Elsevier, 2018-07-12)
      In this work we discuss the connection between classical and fractional viscoelastic Maxwell models, presenting the basic theory supporting these constitutive equations, and establishing some background on the admissibility of the fractional Maxwell model. We then develop a numerical method for the solution of two coupled fractional differential equations (one for the velocity and the other for the stress), that appear in the pure tangential annular ow of fractional viscoelastic fluids. The numerical method is based on finite differences, with the approximation of fractional derivatives of the velocity and stress being inspired by the method proposed by Sun and Wu for the fractional diffusion-wave equation [ Z.Z. Sun, X. Wu, A fully discrete difference scheme for a diffusion-wave system, Applied Numerical Mathematics 56 (2006) 193-209]. We prove solvability, study numerical convergence of the method, and also discuss the applicability of this method for simulating the rheological response of complex fluids in a real concentric cylinder rheometer. By imposing a torsional step-strain, we observe the different rates of stress relaxation obtained with different values of \alpha and \beta (the fractional order exponents that regulate the viscoelastic response of the complex fluids).
    • Mathematical models of DNA methylation dynamics: Implications for health and ageing

      Zagkos, Loukas; Mc Auley, Mark; Roberts, Jason; Kavallaris, Nikos; University of Chester (Elsevier, 2018)
      DNA methylation status is a key epigenetic process which has been intimately associated with gene regulation. In recent years growing evidence has associated DNA methylation status with a variety of diseases including cancer, Alzheimers disease and cardiovascular disease. Moreover, changes to DNA methylation have also recently been implicated in the ageing process. The factors which underpin DNA methylation are complex, and remain to be fully elucidated. Over the years mathematical modelling has helped to shed light on the dynamics of this important molecular system. Although the existing models have contributed significantly to our overall understanding of DNA methylation, they fall-short of fully capturing the dynamics of this process. In this paper we develop a linear and nonlinear model which captures more fully the dynamics of the key intracellular events which characterise DNA methylation. In particular the outcomes of our linear model result in gene promoter specific methylation levels which are more biologically plausible than those revealed by previous mathematical models. In addition, our non-linear model predicts DNA methylation promoter bistability which is commonly observed experimentally. The findings from our models have implications for our current understanding of how changes to the dynamics which underpin DNA methylation affect ageing and health.
    • A high-order scheme to approximate the Caputo fractional derivative and its application to solve the fractional diffusion wave equation

      Du, Ruilian; Yan, Yubin; Liang, Zongqi; Jimei University; University of Chester (Elsevier, 2018-10-05)
      A new high-order finite difference scheme to approximate the Caputo fractional derivative $\frac{1}{2} \big ( \, _{0}^{C}D^{\alpha}_{t}f(t_{k})+ \, _{0}^{C}D^{\alpha}_{t}f(t_{k-1}) \big ), k=1, 2, \dots, N, $ with the convergence order $O(\Delta t^{4-\alpha}), \, \alpha\in(1,2)$ is obtained when $f^{\prime \prime \prime} (t_{0})=0$, where $\Delta t$ denotes the time step size. Based on this scheme we introduce a finite difference method for solving fractional diffusion wave equation with the convergence order $O(\Delta t^{4-\alpha} + h^2)$, where $h$ denotes the space step size. Numerical examples are given to show that the numerical results are consistent with the theoretical results.
    • A Posteriori Analysis for Space-Time, discontinuous in time Galerkin approximations for parabolic equations in a variable domain

      Antonopoulou, Dimitra; Plexousakis, Michael; University of Chester; University of Crete (ECP sciences, 2018)
      This paper presents an a posteriori error analysis for the discontinuous in time space-time scheme proposed by Jamet for the heat equation in multi-dimensional, non-cylindrical domains [25]. Using a Cl ement-type interpolant, we prove abstract a posteriori error bounds for the numerical error. Furthermore, in the case of two-dimensional spatial domains we transform the problem into an equivalent one, of parabolic type, with space-time dependent coe cients but posed on a cylindrical domain. We formulate a discontinuous in time space{time scheme and prove a posteriori error bounds of optimal order. The a priori estimates of [19] for general parabolic initial and boundary value problems are used in the derivation of the upper bound. Our lower bound coincides with that of Picasso [36], proposed for adaptive, Runge-Kutta finite element methods for linear parabolic problems. Our theoretical results are verified by numerical experiments.
    • Error estimates of high-order numerical methods for solving time fractional partial differential equations

      Li, Zhiqiang; Yan, Yubin; Luliang University; Shanghai University; University of Chester (De Gruyter, 2018-07-12)
      Error estimates of some high-order numerical methods for solving time fractional partial differential equations are studied in this paper. We first provide the detailed error estimate of a high-order numerical method proposed recently by Li et al. \cite{liwudin} for solving time fractional partial differential equation. We prove that this method has the convergence order $O(\tau^{3- \alpha})$ for all $\alpha \in (0, 1)$ when the first and second derivatives of the solution are vanish at $t=0$, where $\tau$ is the time step size and $\alpha$ is the fractional order in the Caputo sense. We then introduce a new time discretization method for solving time fractional partial differential equations, which has no requirements for the initial values as imposed in Li et al. \cite{liwudin}. We show that this new method also has the convergence order $O(\tau^{3- \alpha})$ for all $\alpha \in (0, 1)$. The proofs of the error estimates are based on the energy method developed recently by Lv and Xu \cite{lvxu}. We also consider the space discretization by using the finite element method. Error estimates with convergence order $O(\tau^{3- \alpha} + h^2)$ are proved in the fully discrete case, where $h$ is the space step size. Numerical examples in both one- and two-dimensional cases are given to show that the numerical results are consistent with the theoretical results.
    • A posteriori error estimates for fully discrete schemes for the time dependent Stokes problem

      Baensch, Eberhard; Karakatsani, Fotini; Makridakis, Charalambos; University of Erlangen; University of Chester; University of Crete; Foundation for Research & Technology, Greece; University of Sussex (Springer, 2018-05-02)
      This work is devoted to a posteriori error analysis of fully discrete finite element approximations to the time dependent Stokes system. The space discretization is based on popular stable spaces, including Crouzeix–Raviart and Taylor–Hood finite element methods. Implicit Euler is applied for the time discretization. The finite element spaces are allowed to change with time steps and the projection steps include alternatives that is hoped to cope with possible numerical artifices and the loss of the discrete incompressibility of the schemes. The final estimates are of optimal order in L∞(L2) for the velocity error.
    • Malliavin Calculus for the stochastic Cahn- Hilliard/Allen-Cahn equation with unbounded noise diffusion

      Antonopoulou, Dimitra; Farazakis, Dimitris; Karali, Georgia D.; University of Chester; Foundation for Research and Technology; University of Crete (Elsevier, 2018-05-08)
      The stochastic partial di erential equation analyzed in this work, is motivated by a simplified mesoscopic physical model for phase separation. It describes pattern formation due to adsorption and desorption mechanisms involved in surface processes, in the presence of a stochastic driving force. This equation is a combination of Cahn-Hilliard and Allen-Cahn type operators with a multiplicative, white, space-time noise of unbounded di usion. We apply Malliavin calculus, in order to investigate the existence of a density for the stochastic solution u. In dimension one, according to the regularity result in [5], u admits continuous paths a.s. Using this property, and inspired by a method proposed in [8], we construct a modi ed approximating sequence for u, which properly treats the new second order Allen-Cahn operator. Under a localization argument, we prove that the Malliavin derivative of u exists locally, and that the law of u is absolutely continuous, establishing thus that a density exists.
    • Non-Local Partial Differential Equations for Engineering and Biology: Mathematical Modeling and Analysis

      Kavallaris, Nikos I.; Suzuki, Takashi; University of Chester; Osaka University (Springer, 2017-12-31)
      This book presents new developments in non-local mathematical modeling and mathematical analysis on the behavior of solutions with novel technical tools. Theoretical backgrounds in mechanics, thermo-dynamics, game theory, and theoretical biology are examined in details. It starts off with a review and summary of the basic ideas of mathematical modeling frequently used in the sciences and engineering. The authors then employ a number of models in bio-science and material science to demonstrate applications, and provide recent advanced studies, both on deterministic non-local partial differential equations and on some of their stochastic counterparts used in engineering. Mathematical models applied in engineering, chemistry, and biology are subject to conservation laws. For instance, decrease or increase in thermodynamic quantities and non-local partial differential equations, associated with the conserved physical quantities as parameters. These present novel mathematical objects are engaged with rich mathematical structures, in accordance with the interactions between species or individuals, self-organization, pattern formation, hysteresis. These models are based on various laws of physics, such as mechanics of continuum, electro-magnetic theory, and thermodynamics. This is why many areas of mathematics, calculus of variation, dynamical systems, integrable systems, blow-up analysis, and energy methods are indispensable in understanding and analyzing these phenomena. This book aims for researchers and upper grades students in mathematics, engineering, physics, economics, and biology.