Browsing Mathematics by Submit Date
Now showing items 120 of 189

Entropydriven cell decisionmaking predicts "fluidtosolid" transition in multicellular systemsCellular decision making allows cells to assume functionally different phenotypes in response to microenvironmental cues, with or without genetic change. It is an open question, how individual cell decisions influence the dynamics at the tissue level. Here, we study spatiotemporal pattern formation in a population of cells exhibiting phenotypic plasticity, which is a paradigm of cell decision making. We focus on the migration/resting and the migration/proliferation plasticity which underly the epithelialmesenchymal transition (EMT) and the go or grow dichotomy. We assume that cells change their phenotype in order to minimize their microenvironmental entropy following the LEUP (Least microEnvironmental Uncertainty Principle) hypothesis. In turn, we study the impact of the LEUPdriven migration/resting and migration/proliferation plasticity on the corresponding multicellular spatiotemporal dynamics with a stochastic cellbased mathematical model for the spatiotemporal dynamics of the cell phenotypes. In the case of the go or rest plasticity, a corresponding meanfield approximation allows to identify a bistable switching mechanism between a diffusive (fluid) and an epithelial (solid) tissue phase which depends on the sensitivity of the phenotypes to the environment. For the go or grow plasticity, we show the possibility of Turing pattern formation for the "solid" tissue phase and its relation with the parameters of the LEUPdriven cell decisions.

Extending an Established Isomorphism between Group Rings and a Subring of the n × n MatricesIn this work, we extend an established isomorphism between group rings and a subring of the n × n matrices. This extension allows us to construct more complex matrices over the ring R. We present many interesting examples of complex matrices constructed directly from our extension. We also show that some of the matrices used in the literature before can be obtained by a direct application of our extended isomorphism.

Two highorder time discretization schemes for subdiffusion problems with nonsmooth dataTwo new highorder time discretization schemes for solving subdiffusion problems with nonsmooth data are developed based on the corrections of the existing time discretization schemes in literature. Without the corrections, the schemes have only a first order of accuracy for both smooth and nonsmooth data. After correcting some starting steps and some weights of the schemes, the optimal convergence orders $O(k^{3 \alpha})$ and $O(k^{4 \alpha})$ with $0< \alpha <1$ can be restored for any fixed time $t$ for both smooth and nonsmooth data, respectively. The error estimates for these two new highorder schemes are proved by using Laplace transform method for both homogeneous and inhomogeneous problem. Numerical examples are given to show that the numerical results are consistent with the theoretical results.

Dynamics of shadow system of a singular GiererMeinhardt system on an evolving domainThe main purpose of the current paper is to contribute towards the comprehension of the dynamics of the shadow system of a singular GiererMeinhardt model on an isotropically evolving domain. In the case where the inhibitor's response to the activator's growth is rather weak, then the shadow system of the GiererMeinhardt model is reduced to a single though nonlocal equation whose dynamics is thoroughly investigated throughout the manuscript. The main focus is on the derivation of blowup results for this nonlocal equation, which can be interpreted as instability patterns of the shadow system. In particular, a diffusiondriven instability (DDI), or Turing instability, in the neighbourhood of a constant stationary solution, which then is destabilised via diffusiondriven blowup, is observed. The latter indicates the formation of some unstable patterns, whilst some stability results of globalintime solutions towards nonconstant steady states guarantee the occurrence of some stable patterns. Most of the theoretical results are verified numerically, whilst the numerical approach is also used to exhibit the dynamics of the shadow system when analytical methods fail.

DOMestic Energy Systems and Technologies InCubator (DOMESTIC) and indoor air quality of the built environmentOral presentation at RMetS Students and Early Career Scientists Conference 2020 on research project DOMESTIC (DOMestic Energy Systems and Technologies InCubator), which aims to build a facility for the demonstration of domestic technologies and design methodologies (i.e. air quality, energy efficiency).

New SelfDual Codes of Length 68 from a 2 × 2 Block Matrix Construction and Group RingsMany generator matrices for constructing extremal binary selfdual codes of different lengths have the form G = (In  A); where In is the n x n identity matrix and A is the n x n matrix fully determined by the first row. In this work, we define a generator matrix in which A is a block matrix, where the blocks come from group rings and also, A is not fully determined by the elements appearing in the first row. By applying our construction over F2 +uF2 and by employing the extension method for codes, we were able to construct new extremal binary selfdual codes of length 68. Additionally, by employing a generalised neighbour method to the codes obtained, we were able to con struct many new binary selfdual [68,34,12]codes with the rare parameters $\gamma = 7$; $8$ and $9$ in $W_{68,2}$: In particular, we find 92 new binary selfdual [68,34,12]codes.

SelfDual Codes using Bisymmetric Matrices and Group RingsIn this work, we describe a construction in which we combine together the idea of a bisymmetric matrix and group rings. Applying this construction over the ring F4 + uF4 together with the well known extension and neighbour methods, we construct new selfdual codes of length 68: In particular, we find 41 new codes of length 68 that were not known in the literature before.

New Extremal binary selfdual codes of length 68 from generalized neighborsIn this work, we use the concept of distance between selfdual codes, which generalizes the concept of a neighbor for selfdual codes. Using the $k$neighbors, we are able to construct extremal binary selfdual codes of length 68 with new weight enumerators. We construct 143 extremal binary selfdual codes of length 68 with new weight enumerators including 42 codes with $\gamma=8$ in their $W_{68,2}$ and 40 with $\gamma=9$ in their $W_{68,2}$. These examples are the first in the literature for these $\gamma$ values. This completes the theoretical list of possible values for $\gamma$ in $W_{68,2}$.

Higher Order Time Stepping Methods for Subdiffusion Problems Based on Weighted and Shifted Grünwald–Letnikov Formulae with Nonsmooth DataTwo higher order time stepping methods for solving subdiffusion problems are studied in this paper. The Caputo time fractional derivatives are approximated by using the weighted and shifted Gr\"unwaldLetnikov formulae introduced in Tian et al. [Math. Comp. 84 (2015), pp. 27032727]. After correcting a few starting steps, the proposed time stepping methods have the optimal convergence orders $O(k^2)$ and $ O(k^3)$, respectively for any fixed time $t$ for both smooth and nonsmooth data. The error estimates are proved by directly bounding the approximation errors of the kernel functions. Moreover, we also present briefly the applicabilities of our time stepping schemes to various other fractional evolution equations. Finally, some numerical examples are given to show that the numerical results are consistent with the proven theoretical results.

An analysis of the L1 scheme for stochastic subdiffusion problem driven by integrated spacetime white noiseWe consider the strong convergence of the numerical methods for solving stochastic subdiffusion problem driven by an integrated spacetime white noise. The time fractional derivative is approximated by using the L1 scheme and the time fractional integral is approximated with the Lubich's first order convolution quadrature formula. We use the Euler method to approximate the noise in time and use the truncated series to approximate the noise in space. The spatial variable is discretized by using the linear finite element method. Applying the idea in Gunzburger \et (Math. Comp. 88(2019), pp. 17151741), we express the approximate solutions of the fully discrete scheme by the convolution of the piecewise constant function and the inverse Laplace transform of the resolvent related function. Based on such convolution expressions of the approximate solutions, we obtain the optimal convergence orders of the fully discrete scheme in spatial multidimensional cases by using the Laplace transform method and the corresponding resolvent estimates.

New binary selfdual codes via a generalization of the four circulant constructionIn this work, we generalize the four circulant construction for selfdual codes. By applying the constructions over the alphabets $\mathbb{F}_2$, $\mathbb{F}_2+u\mathbb{F}_2$, $\mathbb{F}_4+u\mathbb{F}_4$, we were able to obtain extremal binary selfdual codes of lengths 40, 64 including new extremal binary selfdual codes of length 68. More precisely, 43 new extremal binary selfdual codes of length 68, with rare new parameters have been constructed.

2^n Bordered Constructions of SelfDual codes from Group RingsSelfdual codes, which are codes that are equal to their orthogonal, are a widely studied family of codes. Various techniques involving circulant matrices and matrices from group rings have been used to construct such codes. Moreover, families of rings have been used, together with a Gray map, to construct binary selfdual codes. In this paper, we introduce a new bordered construction over group rings for selfdual codes by combining many of the previously used techniques. The purpose of this is to construct selfdual codes that were missed using classical construction techniques by constructing selfdual codes with diﬀerent automorphism groups. We apply the technique to codes over ﬁnite commutative Frobenius rings of characteristic 2 and several group rings and use these to construct interesting binary selfdual codes. In particular, we construct some extremal selfdual codes length 64 and 68, constructing 30 new extremal selfdual codes of length 68.

Finitetime blowup of a nonlocal stochastic parabolic problemThe main aim of the current work is the study of the conditions under which (finitetime) blowup of a nonlocal stochastic parabolic problem occurs. We first establish the existence and uniqueness of the localintime weak solution for such problem. The first part of the manuscript deals with the investigation of the conditions which guarantee the occurrence of noiseinduced blowup. In the second part we first prove the $C^{1}$spatial regularity of the solution. Then, based on this regularity result, and using a strong positivity result we derive, for first in the literature of SPDEs, a Hopf's type boundary value point lemma. The preceding results together with Kaplan's eigenfunction method are then employed to provide a (nonlocal) drift term induced blowup result. In the last part of the paper, we present a method which provides an upper bound of the probability of (nonlocal) drift term induced blowup.

New Extremal SelfDual Binary Codes of Length 68 via Composite Construction, F2 + uF2 Lifts, Extensions and NeighborsWe describe a composite construction from group rings where the groups have orders 16 and 8. This construction is then applied to find the extremal binary selfdual codes with parameters [32, 16, 8] or [32, 16, 6]. We also extend this composite construction by expanding the search field which enables us to find more extremal binary selfdual codes with the above parameters and with different orders of automorphism groups. These codes are then lifted to F2 + uF2, to obtain extremal binary images of codes of length 64. Finally, we use the extension method and neighbor construction to obtain new extremal binary selfdual codes of length 68. As a result, we obtain 28 new codes of length 68 which were not known in the literature before.

The diffusiondriven instability and complexity for a singlehanded discrete Fisher equationFor a reaction diffusion system, it is well known that the diffusion coefficient of the inhibitor must be bigger than that of the activator when the Turing instability is considered. However, the diffusiondriven instability/Turing instability for a singlehanded discrete Fisher equation with the Neumann boundary conditions may occur and a series of 2periodic patterns have been observed. Motivated by these pattern formations, the existence of 2periodic solutions is established. Naturally, the periodic double and the chaos phenomenon should be considered. To this end, a simplest two elements system will be further discussed, the flip bifurcation theorem will be obtained by computing the center manifold, and the bifurcation diagrams will be simulated by using the shooting method. It proves that the Turing instability and the complexity of dynamical behaviors can be completely driven by the diffusion term. Additionally, those effective methods of numerical simulations are valid for experiments of other patterns, thus, are also beneficial for some application scientists.

High‐order ADI orthogonal spline collocation method for a new 2D fractional integro‐differential problemWe use the generalized L1 approximation for the Caputo fractional derivative, the secondorder fractional quadrature rule approximation for the integral term, and a classical CrankNicolson alternating direction implicit (ADI)scheme for the time discretization of a new twodimensional (2D) fractionalintegrodifferential equation, in combination with a space discretization by anarbitraryorder orthogonal spline collocation (OSC) method. The stability of aCrankNicolson ADI OSC scheme is rigourously established, and error estimateis also derived. Finally, some numerical tests are given

Modified Quadratic Residue Constructions and New Exermal Binary SelfDual Codes of Lengths 64, 66 and 68In this work we consider modiﬁed versions of quadratic double circulant and quadratic bordered double circulant constructions over the binary ﬁeld and the rings F2 +uF2 and F4 +uF4 for diﬀerent prime values of p. Using these constructions with extensions and neighbors we are able to construct a number of extremal binary selfdual codes of diﬀerent lengths with new parameters in their weight enumerators. In particular we construct 2 new codes of length 64, 4 new codes of length 66 and 14 new codes of length 68. The binary generator matrices of the new codes are available online at [8].

Constructing SelfDual Codes from Group Rings and Reverse Circulant MatricesIn this work, we describe a construction for selfdual codes in which we employ group rings and reverse circulant matrices. By applying the construction directly over different alphabets, and by employing the well known extension and neighbor methods we were able to obtain extremal binary selfdual codes of different lengths of which some have parameters that were not known in the literature before. In particular, we constructed three new codes of length 64, twentytwo new codes of length 68, twelve new codes of length 80 and four new codes of length 92.

Developing A Highperformance Liquid Chromatography Method for Simultaneous Determination of Loratadine and its Metabolite Desloratadine in Human Plasma.Allergic diseases are considered among the major burdons of public health with increased prevalence globally. Histamine H1receptor antagonists are the foremost commonly used drugs in the treatment of allergic disorders. Our target drug is one of this class, loratadine and its biometabolite desloratadine which is also a non sedating H1 receptor antagonist with antihistaminic action of 2.5 to 4 times greater than loratadine. To develop and validate a novel isocratic reversedphase high performance liquid chromatography (RPHPLC) method for rapid and simultaneous separation and determination of loratadine and its metabolite, desloratadine in human plasma. The drug extraction method from plasma was based on protein precipitation technique. The separation was carried out on a Thermo Scientific BDS Hypersil C18 column (5µm, 250 x 4.60 mm) using a mobile phase of MeOH : 0.025M KH2PO4 adjusted to pH 3.50 using orthophosphoric acid (85 : 15, v/v) at ambient temperature. The flow rate was maintained at 1 mL/min and maximum absorption was measured using PDA detector at 248 nm. The retention times of loratadine and desloratadine in plasma samples were recorded to be 4.10 and 5.08 minutes respectively, indicating a short analysis time. Limits of detection were found to be 1.80 and 1.97 ng/mL for loratadine and desloratadine, respectively, showing a high degree of method sensitivity. The method was then validated according to FDA guidelines for the determination of the two analytes in human plasma. The results obtained indicate that the proposed method is rapid, sensitive in the nanogram range, accurate, selective, robust and reproducible compared to other reported methods. [Abstract copyright: Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.]

Double Bordered Constructions of SelfDual Codes from Group Rings over Frobenius RingsIn this work, we describe a double bordered construction of selfdual codes from group rings. We show that this construction is effective for groups of order 2p where p is odd, over the rings F2 + uF2 and F4 + uF4. We demonstrate the importance of this new construction by finding many new binary selfdual codes of lengths 64, 68 and 80; the new codes and their corresponding weight enumerators are listed in several tables