• Evaluation of heat shock protein 70 as a biomarker of environmental stress in Fucus serratus and Lemna minor

      Ireland, H. Elyse; Harding, Steve J.; Bonwick, Graham A.; Jones, Michael; Smith, Christopher J.; Williams, John H. H.; University College Chester (Taylor & Francis, 2004-03)
      Heat shock proteins (Hsps) are known to be induced in response to short-term stress. The present study aimed to evaluate the potential of Hsp70 as a biomarker of stress produced by increased temperature, osmotic pressure, and exposure to cadmium and sodium chloride in marine macroalgae and fresh water plant species. An indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) was developed with a working range of 0.025-10 μg ml-1 using a monoclonal antibody raised against purified Hsp70 of Phaseolus aureus (mung bean). Fucus serratus (toothed wrack), Chondrus crispus (Stackhouse or Carrageen moss), Ulva lactuca (sea lettuce) and Lemna minor (common duckweed) sample extracts were stressed for up to 24 h and then tested in the IC-ELISA. The presence of Hsp70 and cross-reactivity of the monoclonal antibody was confirmed by Western blot. The heat shock response was confirmed in each species using a 2-h 42°C treatment. Following heat shock, Hsp70 concentrations increased to a peak at 2 h (F. serratus) or 4 h (L. minor), after which concentrations decreased. Osmotic and cadmium stresses also resulted in elevated Hsp70 concentrations in samples of F. serratus and L. minor when compared with unstressed controls. In both, osmotic and metal stress, the production of Hsp70 increased to a maximum and subsequently decreased as the stressor levels increased. Results suggest that Hsp70 IC-ELISA could potentially be applied to the detection of stress in these aquatic species, although it would probably be most effective when used in conjunction with other measurements to provide a stressor-specific biomarker profile or fingerprint.
    • Measuring the secretion of heat shock proteins from cells

      Ireland, H. Elyse; Leoni, Francesca; Altaie, Ala; Birch, Catherine S.; Coleman, Robert C.; Hunter-Lavin, Claire; Williams, John H. H.; University of Chester (Elsevier, 2007-10-03)
      This article outlines procedures, using Hsp70 as the example, to: ensure the status of cells (viable, apoptotic or necrotic); identify the heat shock protein secreted; and quantify the secreted protein. Hsp70 has previously been quantified by ELISA, but newer methods are now being adopted, such as BIAcore and bead-based assays for use by FACS. These methods have the advantages of being more sensitive and requiring less sample than ELISA. The BIAcore has the potential to analyse Hsp70 ligands and provide affinity constants.