• A call to action for climate change research on Caribbean dry forests

      Nelson, Howard P.; Devenish-Nelson, Eleanor S.; Rusk, Bonnie L.; Geary, Matthew; Lawrence, Andrew J.; Department of Biological Sciences, University of Chester; Grenada Dove Conservation Programme, St. Georges, Grenada (Springer, 2018-04-20)
      Tropical dry forest (TDF) is globally one of the most threatened forest types. In the insular Caribbean, limited land area and high population pressure have resulted in the loss of over 60% of TDF, yet local people’s reliance on these systems for ecosystem services is high. Given the sensitivity of TDF to shifts in precipitation regimes and the vulnerability of the Caribbean to climate change, this study examined what is currently known about the impacts of climate change on TDF in the region. A systematic review (n = 89) revealed that only two studies addressed the ecological response of TDF to climate change. Compared to the rapidly increasing knowledge of the effects of climate change on other Caribbean systems and on TDF in the wider neotropics, this paucity is alarming given the value of these forests. We stress the need for long-term monitoring of climate change responses of these critical ecosystems, including phenological and hotspot analyses as priorities.
    • Lipid remodelling in the reef-building honeycomb worm, Sabellaria alveolata, reflects acclimation and local adaptation to temperature

      Muir, Anna P.; Nunes, Flavia L. D.; Dubois, Stanislas F.; Pernet, Fabrice; University of Chester; Ifremer Centre Bretagne; Ifremer Centre Bretagne; Ifremer Centre Bretagne (Nature Publishing Group, 2016-10-20)
      Acclimation and adaptation, which are key to species survival in a changing climate, can be observed in terms of membrane lipid composition. Remodelling membrane lipids, via homeoviscous adaptation (HVA), counteracts membrane dysfunction due to temperature in poikilotherms. In order to assess the potential for acclimation and adaptation in the honeycomb worm, Sabellaria alveolata, a reefbuilding polychaete that supports high biodiversity, we carried out common-garden experiments using individuals from along its latitudinal range. Individuals were exposed to a stepwise temperature increase from 15 °C to 25 °C and membrane lipid composition assessed. Our results suggest that S. alveolata was able to acclimate to higher temperatures, as observed by a decrease in unsaturation index and 20:5n-3. However, over the long-term at 25 °C, lipid composition patterns are not consistent with HVA expectations and suggest a stress response. Furthermore, unsaturation index of individuals from the two coldest sites were higher than those from the two warmest sites, with individuals from the thermally intermediate site being in-between, likely reflecting local adaptation to temperature. Therefore, lipid remodelling appears limited at the highest temperatures in S. alveolata, suggesting that individuals inhabiting warm environments may be close to their upper thermal tolerance limits and at risk in a changing climate.