• The interaction of KIR3DL1*001 with HLA class I molecules is dependent upon molecular microarchitecture within the Bw4 epitope

      Saunders, Philippa M.; Vivian, Julian P.; Baschuk, Nikola; Beddoe, Travis; Widjaja, Jacqueline M.; O’Connor, Geraldine M.; Hitchen, Corinne; Pymm, Phillip; Andrews, Daniel M.; Gras, Stephanie; et al. (2015-01-02)
      The killer cell Ig-like receptor 3DL1 (KIR3DL1) inhibits activation of NK cells upon interaction with HLA class I molecules such as HLA-B*57:01, which contains the Bw4 epitope spanning residues 77-83 (e.g., NLRIALR), and not with HLA allomorphs that possess the Bw6 motif (e.g., HLA-B*08:01), which differ at residues 77, 80, 81, 82, and 83. Although Bw4 residues Ile(80) and Arg(83) directly interact with KIR3DL1*001, their precise role in determining KIR3DL1-HLA-Bw4 specificity remains unclear. Recognition of HLA-B*57:01 by either KIR3DL1(+) NK cells or the NK cell line YTS transfected with KIR3DL1*001 was impaired by mutation of residues 80 and 83 of HLA-B*57:01 to the corresponding amino acids within the Bw6 motif. Conversely, the simultaneous introduction of three Bw4 residues at positions 80, 82, and 83 into HLA-B*08:01 conferred an interaction with KIR3DL1*001. Structural analysis of HLA-B*57:01, HLA-B*08:01, and mutants of each bearing substitutions at positions 80 and 83 revealed that Ile(80) and Arg(83) within the Bw4 motif constrain the conformation of Glu(76), primarily through a salt bridge between Arg(83) and Glu(76). This salt bridge was absent in HLA-Bw6 molecules as well as position 83 mutants of HLA-B*57:01. Mutation of the Bw4 residue Ile(80) also disrupted this salt bridge, providing further insight into the role that position 80 plays in mediating KIR3DL1 recognition. Thus, the strict conformation of HLA-Bw4 allotypes, held in place by the Glu(76)-Arg(83) interaction, facilitates KIR3DL1 binding, whereas Bw6 allotypes present a platform on the alpha1 helix that is less permissive for KIR3DL1 binding.
    • Mutational and Structural Analysis of KIR3DL1 Reveals a Lineage-Defining Allotypic Dimorphism That Impacts Both HLA and Peptide Sensitivity

      O'Connor, Geraldine M.; Vivian, Julian P.; Widjaja, Jacqueline M.; Bridgeman, John S.; Gostick, Emma; Lafont, Bernard A.; Anderson, Stephen K.; Price, David A.; Brooks, Andrew G.; Rossjohn, Jamie; et al. (American Association of Immunologists, 2014-03-15)
      Killer Ig-like receptors (KIRs) control the activation of human NK cells via interactions with peptide-laden HLAs. KIR3DL1 is a highly polymorphic inhibitory receptor that recognizes a diverse array of HLA molecules expressing the Bw4 epitope, a group with multiple polymorphisms incorporating variants within the Bw4 motif. Genetic studies suggest that KIR3DL1 variation has functional significance in several disease states, including HIV infection. However, owing to differences across KIR3DL1 allotypes, HLA-Bw4, and associated peptides, the mechanistic link with biological outcome remains unclear. In this study, we elucidated the impact of KIR3DL1 polymorphism on peptide-laden HLA recognition. Mutational analysis revealed that KIR residues involved in water-mediated contacts with the HLA-presented peptide influence peptide binding specificity. In particular, residue 282 (glutamate) in the D2 domain underpins the lack of tolerance of negatively charged C-terminal peptide residues. Allotypic KIR3DL1 variants, defined by neighboring residue 283, displayed differential sensitivities to HLA-bound peptide, including the variable HLA-B*57:01-restricted HIV-1 Gag-derived epitope TW10. Residue 283, which has undergone positive selection during the evolution of human KIRs, also played a central role in Bw4 subtype recognition by KIR3DL1. Collectively, our findings uncover a common molecular regulator that controls HLA and peptide discrimination without participating directly in peptide-laden HLA interactions. Furthermore, they provide insight into the mechanics of interaction and generate simple, easily assessed criteria for the definition of KIR3DL1 functional groupings that will be relevant in many clinical applications, including bone marrow transplantation.