• Effects of transportation, transport medium and re-housing on Xenopus laevis (Daudin)

      Holmes, Andrew M.; Emmans, Christopher J.; Coleman, Robert C.; Smith, Tessa E.; Hosie, Charlotte A.; University of Chester (Elsevier, 2018-03-12)
      Understanding the immediate and longer-term effects of transportation and re-housing in a laboratory species is crucial in order to refine the transfer process, enable the optimal introduction of new animals to a novel environment and to provide a sufficient acclimatisation period before usage. Whilst consideration of animal welfare in most model vertebrate species has received attention, little quantitative evidence exists for the optimal care of the common laboratory amphibian Xenopus laevis. Techniques for the non-invasive welfare assessment of amphibians are also limited and here a non-invasive physiological assay was developed to investigate the impacts of transportation, transport medium and re-housing on X. laevis. First the impacts of transportation and transport medium (water, damp sponge or damp sphagnum moss) were investigated. Transportation caused an increase in waterborne corticosterone regardless of transport medium. Frogs transported in damp sphagnum moss also had a greater decrease in body mass in comparison to frogs not transported, suggesting that this is the least suitable transport medium for X. laevis. Next the prolonged impacts of transportation and re-housing were investigated. Frogs were transported between research facilities with different housing protocols. Samples were collected prior to and immediately following transportation, as well as 1 day, 7 days and 35 days after re-housing. Water-borne corticosterone increased following transportation and remained high for at least 7 days, decreasing to baseline levels by 35 days. Body mass decreased following transportation and remained lower than baseline levels across the entire 35 day observation period. These findings suggest the process of transportation and re-housing is stressful in this species. Together these findings have important relevance for both improving animal welfare and ensuring optimal and efficient scientific research.
    • Physiological stress in the Eurasian badger (Meles meles): Effects of host, disease and environment

      George, Shelia C.; Smith, Tessa E.; Mac Cana, Pól S. S.; Coleman, Robert C.; Montgomery, William I.; Queens University of Belfast, UK; University of Chester, UK (Elsevier, 2014-03-04)
      A method for monitoring hypothalamic–pituitary–adrenal (HPA) responses of the Eurasian badger (Meles meles) to stressors was validated by measuring cortisol excretion in serum and faeces. Serum and faecal samples were collected under anaesthesia from live-captured, wild badgers and fresh faeces was collected from latrines at 15 social groups in County Down, Northern Ireland. Variation in levels of cortisol in wild badgers was investigated relative to disease status, season, age, sex, body mass, body condition and reproductive status and environmental factors that might influence stress. Faecal cortisol levels were significantly higher in animals testing culture-positive for Mycobacterium bovis. Prolonged elevation of cortisol can suppress immune function, which may have implications for disease transmission. There was a strong seasonal pattern in both serum cortisol, peaking in spring and faecal cortisol, peaking in summer. Cortisol levels were also higher in adults with poor body condition and low body mass. Faecal samples collected from latrines in grassland groups had significantly higher cortisol than those collected from woodland groups, possibly as a result of greater exposure to sources of environmental stress. This study is the first to investigate factors influencing physiological stress in badgers and indicates that serological and faecal excretion are valid indices of the HPA response to a range of stressors.