• Graphene nanocoating provides superb long-lasting corrosion protection to titanium alloy.

      Malhotra, Ritika; email: ritika.m@nus.edu.sg; Han, Yingmei; email: e0005491@u.nus.edu; Nijhuis, Christian A; email: c.a.nijhuis@utwente.nl; Silikas, Nikolaos; email: nikolaos.silikas@manchester.ac.uk; Castro Neto, A H; email: c2dhead@nus.edu.sg; Rosa, Vinicius; email: denvr@nus.edus.sg (2021-08-19)
      The presence of metallic species around failed implants raises concerns about the stability of titanium alloy (Ti-6Al-4V). Graphene nanocoating on titanium alloy (GN) has promising anti-corrosion properties, but its long-term protective potential and structural stability remains unknown. The objective was to determine GN's anti-corrosion potential and stability over time. GN and uncoated titanium alloy (Control) were challenged with a highly acidic fluorinated corrosive medium (pH 2.0) for up to 240 days. The samples were periodically tested using potentiodynamic polarization curves, electrochemical impedance spectroscopy and inductively coupled plasma-atomic emission spectroscopy (elemental release). The integrity of samples was determined using Raman spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and scanning electron microscopy. Statistical analyses were performed with one-sample t-test, paired t-test and one-way ANOVA with Tukey post-hoc test with a pre-set significance level of 5%. There was negligible corrosion and elemental loss on GN. After 240 days of corrosion challenge, the corrosion rate and roughness increased by two and twelve times for the Control whereas remained unchanged for GN. The nanocoating presented remarkably high structural integrity and coverage area (>98%) at all time points tested. Graphene nanocoating protects titanium alloy from corrosion and dissolution over a long period while maintaining high structural integrity. This coating has promising potential for persistent protection of titanium and potentially other metallic alloys against corrosion. [Abstract copyright: Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.]
    • Interlayer and interfacial stress transfer in hBN nanosheets

      Wang, Weimiao; Li, Zheling; orcid: 0000-0001-8412-0234; Marsden, Alex J; orcid: 0000-0002-3017-1754; Bissett, Mark A; orcid: 0000-0002-8908-7960; Young, Robert J; orcid: 0000-0001-6073-9489; email: robert.young@manchester.ac.uk (IOP Publishing, 2021-06-30)
      Abstract: Stress transfer has been investigated for exfoliated hexagonal boron nitride (hBN) nanosheets (BNNSs) through the use of Raman spectroscopy. Single BNNSs of different thicknesses of up to 100 nm (300 layers) were deposited upon a poly(methyl methacrylate) (PMMA) substrate and deformed in unixial tension. The Raman spectra from the BNNSs were relatively weak compared to graphene, but the in-plane E2g Raman mode (the G band) could be distinguished from the spectrum of the PMMA substrate. It was found that G band down-shifted during tensile deformation and that the rate of band shift per unit strain decreased as the thickness of the BNNSs increased, as is found for multi-layer graphene. The efficiency of internal stress transfer between the different hBN layers was found to be of the order of 99% compared to 60%–80% for graphene, as a result of the stronger bonding between the hBN layers in the BNNSs. The reduction in bandshift rate can be related to the effective Young’s modulus of the 2D material in a nanocomposites and the findings show that it would be expected that even 100 layer BNNSs should have a Young’s modulus of more than half that of hBN monolayer. Interfacial stress transfer between a single hBN nanosheet and the PMMA substrate has been evaluated using shear lag theory. It is found that the interfacial shear stress between the BNNS and the substrate is of the order of 10 MPa, a factor of around 4 higher than that for a graphene monolayer. These findings imply that BNNSs should give better mechanical reinforcement than graphene in polymer-based nanocomposites as a result of good internal interlayer stress transfer within the nanosheets and better interfacial stress transfer to the polymer matrix.
    • Interlayer and interfacial stress transfer in hBN nanosheets

      Wang, Weimiao; Li, Zheling; orcid: 0000-0001-8412-0234; Marsden, Alex J; orcid: 0000-0002-3017-1754; Bissett, Mark A; orcid: 0000-0002-8908-7960; Young, Robert J; orcid: 0000-0001-6073-9489; email: robert.young@manchester.ac.uk (IOP Publishing, 2021-06-30)
      Abstract: Stress transfer has been investigated for exfoliated hexagonal boron nitride (hBN) nanosheets (BNNSs) through the use of Raman spectroscopy. Single BNNSs of different thicknesses of up to 100 nm (300 layers) were deposited upon a poly(methyl methacrylate) (PMMA) substrate and deformed in unixial tension. The Raman spectra from the BNNSs were relatively weak compared to graphene, but the in-plane E2g Raman mode (the G band) could be distinguished from the spectrum of the PMMA substrate. It was found that G band down-shifted during tensile deformation and that the rate of band shift per unit strain decreased as the thickness of the BNNSs increased, as is found for multi-layer graphene. The efficiency of internal stress transfer between the different hBN layers was found to be of the order of 99% compared to 60%–80% for graphene, as a result of the stronger bonding between the hBN layers in the BNNSs. The reduction in bandshift rate can be related to the effective Young’s modulus of the 2D material in a nanocomposites and the findings show that it would be expected that even 100 layer BNNSs should have a Young’s modulus of more than half that of hBN monolayer. Interfacial stress transfer between a single hBN nanosheet and the PMMA substrate has been evaluated using shear lag theory. It is found that the interfacial shear stress between the BNNS and the substrate is of the order of 10 MPa, a factor of around 4 higher than that for a graphene monolayer. These findings imply that BNNSs should give better mechanical reinforcement than graphene in polymer-based nanocomposites as a result of good internal interlayer stress transfer within the nanosheets and better interfacial stress transfer to the polymer matrix.
    • Portable through Bottle SORS for the Authentication of Extra Virgin Olive Oil

      Varnasseri, Mehrvash; email: Mehrvash.Varnasseri@liverpool.ac.uk; Muhamadali, Howbeer; email: Howbeer.Muhamad-Ali@liverpool.ac.uk; Xu, Yun; email: Yun.Xu@liverpool.ac.uk; Richardson, Paul I. C.; email: P.Richardson2@liverpool.ac.uk; Byrd, Nick; email: nick.byrd@campdenbri.co.uk; Ellis, David I.; orcid: 0000-0002-7633-7019; email: D.Ellis@manchester.ac.uk; Matousek, Pavel; email: pavel.matousek@stfc.ac.uk; Goodacre, Royston; orcid: 0000-0003-2230-645X; email: Roy.Goodacre@liverpool.ac.uk (MDPI, 2021-09-09)
      The authenticity of olive oil has been a significant long-term challenge. Extra virgin olive oil (EVOO) is the most desirable of these products and commands a high price, thus unscrupulous individuals often alter its quality by adulteration with a lower grade oil. Most analytical methods employed for the detection of food adulteration require sample collection and transportation to a central laboratory for analysis. We explore the use of portable conventional Raman and spatially-offset Raman spectroscopy (SORS) technologies as non-destructive approaches to assess the adulteration status of EVOO quantitatively and for SORS directly through the original container, which means that after analysis the bottle is intact and the oil would still be fit for use. Three sample sets were generated, each with a different adulterant and varying levels of chemical similarity to EVOO. These included EVOO mixed with sunflower oil, pomace olive oil, or refined olive oil. Authentic EVOO samples were stretched/diluted from 0% to 100% with these adulterants and measured using two handheld Raman spectrometers (excitation at 785 or 1064 nm) and handheld SORS (830 nm). The PCA scores plots displayed clear trends which could be related to the level of adulteration for all three mixtures. Conventional Raman (at 785 or 1064 nm) and SORS (at 830 nm with a single spatial offset) conducted in sample vial mode resulted in prediction errors for the test set data ranging from 1.9–4.2% for sunflower oil, 6.5–10.7% for pomace olive oil and 8.0–12.8% for refined olive oil; with the limit of detection (LOD) typically being 3–12% of the adulterant. Container analysis using SORS produced very similar results: 1.4% for sunflower, 4.9% for pomace, and 10.1% for refined olive oil, with similar LODs ranging from 2–14%. It can be concluded that Raman spectroscopy, including through-container analysis using SORS, has significant potential as a rapid and accurate analytical method for the non-destructive detection of adulteration of extra virgin olive oil.