• A consideration of publication-derived immune-related associations in Coronavirus and related lung damaging diseases

      Geifman, Nophar; orcid: 0000-0003-2956-6676; email: nophar.geifman@manchester.ac.uk; Whetton, Anthony D. (BioMed Central, 2020-08-03)
      Abstract: Background: The severe acute respiratory syndrome virus SARS-CoV-2, a close relative of the SARS-CoV virus, is the cause of the recent COVID-19 pandemic affecting, to date, over 14 million individuals across the globe and demonstrating relatively high rates of infection and mortality. A third virus, the H5N1, responsible for avian influenza, has caused infection with some clinical similarities to those in COVID-19 infections. Cytokines, small proteins that modulate immune responses, have been directly implicated in some of the severe responses seen in COVID-19 patients, e.g. cytokine storms. Understanding the immune processes related to COVID-19, and other similar infections, could help identify diagnostic markers and therapeutic targets. Methods: Here we examine data of cytokine, immune cell types, and disease associations captured from biomedical literature associated with COVID-19, Coronavirus in general, SARS, and H5N1 influenza, with the objective of identifying potentially useful relationships and areas for future research. Results: Cytokine and cell-type associations captured from Medical Subject Heading (MeSH) terms linked to thousands of PubMed records, has identified differing patterns of associations between the four corpuses of publications (COVID-19, Coronavirus, SARS, or H5N1 influenza). Clustering of cytokine-disease co-occurrences in the context of Coronavirus has identified compelling clusters of co-morbidities and symptoms, some of which already known to be linked to COVID-19. Finally, network analysis identified sub-networks of cytokines and immune cell types associated with different manifestations, co-morbidities and symptoms of Coronavirus, SARS, and H5N1. Conclusion: Systematic review of research in medicine is essential to facilitate evidence-based choices about health interventions. In a fast moving pandemic the approach taken here will identify trends and enable rapid comparison to the literature of related diseases.