• An alternative pathway for membrane protein biogenesis at the endoplasmic reticulum

      O’Keefe, Sarah; orcid: 0000-0002-1744-0198; email: sarah.okeefe@manchester.ac.uk; Zong, Guanghui; orcid: 0000-0002-7335-039X; Duah, Kwabena B.; Andrews, Lauren E.; Shi, Wei Q.; orcid: 0000-0001-5453-1753; High, Stephen; orcid: 0000-0002-4532-8152; email: stephen.high@manchester.ac.uk (Nature Publishing Group UK, 2021-07-01)
      Abstract: The heterotrimeric Sec61 complex is a major site for the biogenesis of transmembrane proteins (TMPs), accepting nascent TMP precursors that are targeted to the endoplasmic reticulum (ER) by the signal recognition particle (SRP). Unlike most single-spanning membrane proteins, the integration of type III TMPs is completely resistant to small molecule inhibitors of the Sec61 translocon. Using siRNA-mediated depletion of specific ER components, in combination with the potent Sec61 inhibitor ipomoeassin F (Ipom-F), we show that type III TMPs utilise a distinct pathway for membrane integration at the ER. Hence, following SRP-mediated delivery to the ER, type III TMPs can uniquely access the membrane insertase activity of the ER membrane complex (EMC) via a mechanism that is facilitated by the Sec61 translocon. This alternative EMC-mediated insertion pathway allows type III TMPs to bypass the Ipom-F-mediated blockade of membrane integration that is seen with obligate Sec61 clients.
    • Targeting the MAPK7/MMP9 axis for metastasis in primary bone cancer

      Green, Darrell; orcid: 0000-0002-0217-3322; Eyre, Heather; Singh, Archana; orcid: 0000-0002-5027-4582; Taylor, Jessica T.; Chu, Jason; Jeys, Lee; Sumathi, Vaiyapuri; Coonar, Aman; Rassl, Doris; Babur, Muhammad; et al. (Nature Publishing Group UK, 2020-07-13)
      Abstract: Metastasis is the leading cause of cancer-related death. This multistage process involves contribution from both tumour cells and the tumour stroma to release metastatic cells into the circulation. Circulating tumour cells (CTCs) survive circulatory cytotoxicity, extravasate and colonise secondary sites effecting metastatic outcome. Reprogramming the transcriptomic landscape is a metastatic hallmark, but detecting underlying master regulators that drive pathological gene expression is a key challenge, especially in childhood cancer. Here we used whole tumour plus single-cell RNA-sequencing in primary bone cancer and CTCs to perform weighted gene co-expression network analysis to systematically detect coordinated changes in metastatic transcript expression. This approach with comparisons applied to data collected from cell line models, clinical samples and xenograft mouse models revealed mitogen-activated protein kinase 7/matrix metallopeptidase 9 (MAPK7/MMP9) signalling as a driver for primary bone cancer metastasis. RNA interference knockdown of MAPK7 reduces proliferation, colony formation, migration, tumour growth, macrophage residency/polarisation and lung metastasis. Parallel to these observations were reduction of activated interleukins IL1B, IL6, IL8 plus mesenchymal markers VIM and VEGF in response to MAPK7 loss. Our results implicate a newly discovered, multidimensional MAPK7/MMP9 signalling hub in primary bone cancer metastasis that is clinically actionable.
    • Ultraviolet light-induced collagen degradation inhibits melanoma invasion

      Budden, Timothy; Gaudy-Marqueste, Caroline; Porter, Andrew; orcid: 0000-0002-3353-7002; Kay, Emily; Gurung, Shilpa; Earnshaw, Charles H.; orcid: 0000-0002-7926-8506; Roeck, Katharina; Craig, Sarah; orcid: 0000-0003-1928-582X; Traves, Víctor; Krutmann, Jean; orcid: 0000-0001-8433-1517; et al. (Nature Publishing Group UK, 2021-05-12)
      Abstract: Ultraviolet radiation (UVR) damages the dermis and fibroblasts; and increases melanoma incidence. Fibroblasts and their matrix contribute to cancer, so we studied how UVR modifies dermal fibroblast function, the extracellular matrix (ECM) and melanoma invasion. We confirmed UVR-damaged fibroblasts persistently upregulate collagen-cleaving matrix metalloprotein-1 (MMP1) expression, reducing local collagen (COL1A1), and COL1A1 degradation by MMP1 decreased melanoma invasion. Conversely, inhibiting ECM degradation and MMP1 expression restored melanoma invasion. Primary cutaneous melanomas of aged humans show more cancer cells invade as single cells at the invasive front of melanomas expressing and depositing more collagen, and collagen and single melanoma cell invasion are robust predictors of poor melanoma-specific survival. Thus, primary melanomas arising over collagen-degraded skin are less invasive, and reduced invasion improves survival. However, melanoma-associated fibroblasts can restore invasion by increasing collagen synthesis. Finally, high COL1A1 gene expression is a biomarker of poor outcome across a range of primary cancers.