• Circadian clock mechanism driving mammalian photoperiodism

      Wood, S. H.; orcid: 0000-0002-8273-4045; Hindle, M. M.; orcid: 0000-0002-6870-4069; Mizoro, Y.; Cheng, Y.; orcid: 0000-0002-1747-9308; Saer, B. R. C.; Miedzinska, K.; Christian, H. C.; orcid: 0000-0002-4263-5499; Begley, N.; McNeilly, J.; McNeilly, A. S.; et al. (Nature Publishing Group UK, 2020-08-27)
      Abstract: The annual photoperiod cycle provides the critical environmental cue synchronizing rhythms of life in seasonal habitats. In 1936, Bünning proposed a circadian-based coincidence timer for photoperiodic synchronization in plants. Formal studies support the universality of this so-called coincidence timer, but we lack understanding of the mechanisms involved. Here we show in mammals that long photoperiods induce the circadian transcription factor BMAL2, in the pars tuberalis of the pituitary, and triggers summer biology through the eyes absent/thyrotrophin (EYA3/TSH) pathway. Conversely, long-duration melatonin signals on short photoperiods induce circadian repressors including DEC1, suppressing BMAL2 and the EYA3/TSH pathway, triggering winter biology. These actions are associated with progressive genome-wide changes in chromatin state, elaborating the effect of the circadian coincidence timer. Hence, circadian clock-pituitary epigenetic pathway interactions form the basis of the mammalian coincidence timer mechanism. Our results constitute a blueprint for circadian-based seasonal timekeeping in vertebrates.
    • Neferine induces autophagy-dependent cell death in apoptosis-resistant cancers via ryanodine receptor and Ca 2+ -dependent mechanism

      Law, Betty Yuen Kwan; Michelangeli, Francesco; Qu, Yuan Qing; orcid: 0000-0003-3733-3661; Xu, Su-Wei; Han, Yu; Mok, Simon Wing Fai; Dias, Ivo Ricardo De Seabra Rodrigues; Javed, Masood-Ul-Hassan; Chan, Wai-Kit; Xue, Wei-Wei; et al. (Nature Publishing Group UK, 2019-12-27)
      Abstract: Resistance of cancer cells to chemotherapy is a significant clinical concern and mechanisms regulating cell death in cancer therapy, including apoptosis, autophagy or necrosis, have been extensively investigated over the last decade. Accordingly, the identification of medicinal compounds against chemoresistant cancer cells via new mechanism of action is highly desired. Autophagy is important in inducing cell death or survival in cancer therapy. Recently, novel autophagy activators isolated from natural products were shown to induce autophagic cell death in apoptosis-resistant cancer cells in a calcium-dependent manner. Therefore, enhancement of autophagy may serve as additional therapeutic strategy against these resistant cancers. By computational docking analysis, biochemical assays, and advanced live-cell imaging, we identified that neferine, a natural alkaloid from Nelumbo nucifera, induces autophagy by activating the ryanodine receptor and calcium release. With well-known apoptotic agents, such as staurosporine, taxol, doxorubicin, cisplatin and etoposide, utilized as controls, neferine was shown to induce autophagic cell death in a panel of cancer cells, including apoptosis-defective and -resistant cancer cells or isogenic cancer cells, via calcium mobilization through the activation of ryanodine receptor and Ulk-1-PERK and AMPK-mTOR signaling cascades. Taken together, this study provides insights into the cytotoxic mechanism of neferine-induced autophagy through ryanodine receptor activation in resistant cancers.
    • Ultraviolet light-induced collagen degradation inhibits melanoma invasion

      Budden, Timothy; Gaudy-Marqueste, Caroline; Porter, Andrew; orcid: 0000-0002-3353-7002; Kay, Emily; Gurung, Shilpa; Earnshaw, Charles H.; orcid: 0000-0002-7926-8506; Roeck, Katharina; Craig, Sarah; orcid: 0000-0003-1928-582X; Traves, Víctor; Krutmann, Jean; orcid: 0000-0001-8433-1517; et al. (Nature Publishing Group UK, 2021-05-12)
      Abstract: Ultraviolet radiation (UVR) damages the dermis and fibroblasts; and increases melanoma incidence. Fibroblasts and their matrix contribute to cancer, so we studied how UVR modifies dermal fibroblast function, the extracellular matrix (ECM) and melanoma invasion. We confirmed UVR-damaged fibroblasts persistently upregulate collagen-cleaving matrix metalloprotein-1 (MMP1) expression, reducing local collagen (COL1A1), and COL1A1 degradation by MMP1 decreased melanoma invasion. Conversely, inhibiting ECM degradation and MMP1 expression restored melanoma invasion. Primary cutaneous melanomas of aged humans show more cancer cells invade as single cells at the invasive front of melanomas expressing and depositing more collagen, and collagen and single melanoma cell invasion are robust predictors of poor melanoma-specific survival. Thus, primary melanomas arising over collagen-degraded skin are less invasive, and reduced invasion improves survival. However, melanoma-associated fibroblasts can restore invasion by increasing collagen synthesis. Finally, high COL1A1 gene expression is a biomarker of poor outcome across a range of primary cancers.