• Current topics in stem cell biology and regenerative medicine: a regional perspective from the United Kingdom

      Johnson, William Eustace; orcid: 0000-0002-7247-9087 (Portland Press Ltd., 2021-10-12)
      This special issue of Emerging Topics in Life Sciences entitled ‘Current Topics in Stem Cells and Regenerative Medicine’ brings together expertise from a collaborative organisation known as the Mercia Stem Cell Alliance (MSCA). The alliance was established initially by Professors Sue Kimber (University of Manchester) and Jon Frampton (University of Birmingham) just over 10 years ago and now has multiple regional centres of excellence across the Midlands and North West of the UK, including Aston University, University of Chester, Keele University, Manchester Metropolitan University, Lancaster University, University of Leicester, University of Liverpool, Liverpool John Moore's University, Loughborough University, University of Nottingham, University of Oxford, University of Sheffield, University of York. Many of these centres have contributed reviews to this issue. The MSCA also partners with industrial and clinical organisations, including the NHS, and is active in bringing stem cells and regenerative medicines to a meaningful translational endpoint (see: http://www.msca.manchester.ac.uk/).
    • Current topics in stem cell biology and regenerative medicine: a regional perspective from the United Kingdom

      Johnson, William Eustace; orcid: 0000-0002-7247-9087 (Portland Press Ltd., 2021-10-12)
      This special issue of Emerging Topics in Life Sciences entitled ‘Current Topics in Stem Cells and Regenerative Medicine’ brings together expertise from a collaborative organisation known as the Mercia Stem Cell Alliance (MSCA). The alliance was established initially by Professors Sue Kimber (University of Manchester) and Jon Frampton (University of Birmingham) just over 10 years ago and now has multiple regional centres of excellence across the Midlands and North West of the UK, including Aston University, University of Chester, Keele University, Manchester Metropolitan University, Lancaster University, University of Leicester, University of Liverpool, Liverpool John Moore's University, Loughborough University, University of Nottingham, University of Oxford, University of Sheffield, University of York. Many of these centres have contributed reviews to this issue. The MSCA also partners with industrial and clinical organisations, including the NHS, and is active in bringing stem cells and regenerative medicines to a meaningful translational endpoint (see: http://www.msca.manchester.ac.uk/).
    • Evolving Molecular Bioscience Education 2021

      Eskild, Winnie; May, Gerhard; Michelangeli, Frank; Minchin, Steve; Roberts, Mark; Sağın, Ferhan; Scott, Pamela; de Mello, Luciane Vieira; Watson, Helen (Portland Press Ltd., 2021-08-06)
    • Regucalcin ameliorates Doxorubicin-induced cytotoxicity in Cos-7 kidney cells and translocates from the nucleus to the mitochondria

      Mohammed, Noor A; Hakeem, Israa; Hodges, Nikolas J; Michelangeli, Francesco (Portland Press Ltd., 2021-12-14)
      Doxorubicin (DOX) is a potent anti-cancer drug, which can have unwanted side-effects such as cardiac and kidney toxicity. A detailed investigation was undertaken of the acute cytotoxic mechanisms of DOX on kidney cells, using Cos-7 cells as kidney cell model. Cos-7 cells were exposed to DOX for a period of 24 hours over a range of concentrations and the LC50 was determined to be 7µM. Further investigations showed that cell death was mainly via apoptosis involving Ca2+ and caspase 9, in addition to autophagy. Regucalcin (RGN), a cytoprotective protein found mainly in liver and kidney tissues, was overexpressed in Cos-7 cells and shown to protect against DOX-induced cell death. Subcellular localization studies in Cos-7 cells showed RGN to be strongly correlated with the nucleus. However, upon treatment with DOX for 4 hours, which induced membrane blebbing in some cells, the localization appeared to be correlated more with the mitochondria in these cells. It is yet to be determined whether this translocation is part of the cytoprotective mechanism or a consequence of chemically-induced cell stress.
    • Regucalcin ameliorates doxorubicin-induced cytotoxicity in Cos-7 kidney cells and translocates from the nucleus to the mitochondria

      Mohammed, Noor A.; Hakeem, Israa J.; Hodges, Nikolas; Michelangeli, Francesco; orcid: 0000-0002-4878-046X (Portland Press Ltd., 2022-01-06)
      Abstract Doxorubicin (DOX) is a potent anticancer drug, which can have unwanted side-effects such as cardiac and kidney toxicity. A detailed investigation was undertaken of the acute cytotoxic mechanisms of DOX on kidney cells, using Cos-7 cells as kidney cell model. Cos-7 cells were exposed to DOX for a period of 24 h over a range of concentrations, and the LC50 was determined to be 7 µM. Further investigations showed that cell death was mainly via apoptosis involving Ca2+ and caspase 9, in addition to autophagy. Regucalcin (RGN), a cytoprotective protein found mainly in liver and kidney tissues, was overexpressed in Cos-7 cells and shown to protect against DOX-induced cell death. Subcellular localization studies in Cos-7 cells showed RGN to be strongly correlated with the nucleus. However, upon treatment with DOX for 4 h, which induced membrane blebbing in some cells, the localization appeared to be correlated more with the mitochondria in these cells. It is yet to be determined whether this translocation is part of the cytoprotective mechanism or a consequence of chemically induced cell stress.