Show simple item record

dc.contributor.authorAdithya, Venkatesh Krishna
dc.contributor.authorWilliams, Bryan M.
dc.contributor.authorCzanner, Silvester
dc.contributor.authorKavitha, Srinivasan
dc.contributor.authorFriedman, David S.
dc.contributor.authorWilloughby, Colin E.
dc.contributor.authorVenkatesh, Rengaraj
dc.contributor.authorCzanner, Gabriela
dc.date.accessioned2025-04-15T09:16:50Z
dc.date.available2025-04-15T09:16:50Z
dc.date.issued2021-05-30
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/629362/jimaging-07-00092.pdf?sequence=2
dc.identifier.citationAdithya, V. K., Williams, B. M., Czanner, S., Kavitha, S., Friedman, D. S., Willoughby, C. E., Venkatesh, R., & Czanner, G. (2021). EffUnet-SpaGen: An efficient and spatial generative approach to glaucoma detection. Journal of Imaging, 7(6), article-number 92. https://doi.org/10.3390/jimaging7060092en_US
dc.identifier.doi10.3390/jimaging7060092en_US
dc.identifier.urihttp://hdl.handle.net/10034/629362
dc.description© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_US
dc.description.abstractCurrent research in automated disease detection focuses on making algorithms "slimmer" reducing the need for large training datasets and accelerating recalibration for new data while achieving high accuracy. The development of slimmer models has become a hot research topic in medical imaging. In this work, we develop a two-phase model for glaucoma detection, identifying and exploiting a redundancy in fundus image data relating particularly to the geometry. We propose a novel algorithm for the cup and disc segmentation "EffUnet" with an efficient convolution block and combine this with an extended spatial generative approach for geometry modelling and classification, termed "SpaGen" We demonstrate the high accuracy achievable by EffUnet in detecting the optic disc and cup boundaries and show how our algorithm can be quickly trained with new data by recalibrating the EffUnet layer only. Our resulting glaucoma detection algorithm, "EffUnet-SpaGen", is optimized to significantly reduce the computational burden while at the same time surpassing the current state-of-art in glaucoma detection algorithms with AUROC 0.997 and 0.969 in the benchmark online datasets ORIGA and DRISHTI, respectively. Our algorithm also allows deformed areas of the optic rim to be displayed and investigated, providing explainability, which is crucial to successful adoption and implementation in clinical settings.en_US
dc.description.sponsorshipUnfundeden_US
dc.format.mediumElectronic
dc.languageen
dc.language.isoen
dc.publisherMDPIen_US
dc.relation.urlhttps://www.mdpi.com/2313-433X/7/6/92en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subjectGlaucomaen_US
dc.subjectGenerative modelen_US
dc.subjectMachine learningen_US
dc.titleEffUnet-SpaGen: An efficient and spatial generative approach to glaucoma detectionen_US
dc.typeArticleen_US
dc.identifier.eissn2313-433Xen_US
dc.contributor.departmentAravind Eye Care System; Lancaster University; Liverpool John Moores University; Harvard Medical School; Ulster Universityen_US
dc.identifier.journalJournal of Imagingen_US
dc.date.updated2025-04-11T13:41:46Z
dc.identifier.volume7
dc.date.accepted2021-05-27
rioxxterms.identifier.projectn/aen_US
rioxxterms.versionVoRen_US
rioxxterms.licenseref.startdate2021-05-30
rioxxterms.typeJournal Article/Review
dc.source.issue6
dc.source.beginpage92
dc.date.deposited2025-04-15en_US


Files in this item

Thumbnail
Name:
jimaging-07-00092.pdf
Size:
1.739Mb
Format:
PDF
Request:
Article - VoR

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/