Show simple item record

dc.contributor.authorYang, Yuhui
dc.contributor.authorYan, Yubin
dc.date.accessioned2025-03-17T11:40:41Z
dc.date.available2025-03-17T11:40:41Z
dc.date.issued2025-03-06
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/629302/mathematics-13-00891-v2.pdf?sequence=2
dc.identifier.citationYang, Y., & Yan, Y. (2025). A fractional Adams method for Caputo fractional differential equations with modified graded meshes. Mathematics, 13(5), article-number 891. https://doi.org/10.3390/math13050891en_US
dc.identifier.doi10.3390/math13050891en_US
dc.identifier.urihttp://hdl.handle.net/10034/629302
dc.description© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_US
dc.description.abstractIn this paper, we introduce an Adams-type predictor–corrector method based on a modified graded mesh for solving Caputo fractional differential equations. This method not only effectively handles the weak singularity near the initial point but also reduces errors associated with large intervals in traditional graded meshes. We prove the error estimates in detail for both 0<α<1 and 1<α<2 cases, where α is the order of the Caputo fractional derivative. Numerical experiments confirm the convergence of the proposed method and compare its performance with the traditional graded mesh approach.en_US
dc.description.sponsorshipUnfundeden_US
dc.languageen
dc.language.isoen
dc.publisherMDPIen_US
dc.relation.urlhttps://www.mdpi.com/2227-7390/13/5/891en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subjectFractional Adams methoden_US
dc.subjectCaputo fractional derivativeen_US
dc.subjectModified graded meshen_US
dc.subjectNonlinear fractional differential equationsen_US
dc.subjectNumerical methodsen_US
dc.titleA fractional Adams method for Caputo fractional differential equations with modified graded meshesen_US
dc.typeArticleen_US
dc.identifier.eissn2227-7390en_US
dc.contributor.departmentLyuliang University; University of Chesteren_US
dc.identifier.journalMathematicsen_US
dc.date.updated2025-03-17T11:33:36Z
dc.identifier.volume13
dc.date.accepted2025-03-05
rioxxterms.identifier.projectn/aen_US
rioxxterms.versionVoRen_US
rioxxterms.licenseref.startdate2025-03-06
rioxxterms.typeJournal Article/Review
dc.source.issue5
dc.source.beginpage891
dc.date.deposited2025-03-17en_US


Files in this item

Thumbnail
Name:
mathematics-13-00891-v2.pdf
Size:
592.3Kb
Format:
PDF
Request:
Article - VoR

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/