Development and Validation of Embedded Device for Electrocardiogram Arrhythmia Empowered with Transfer Learning
Authors
Asif, Rizwana NazAbbas, Sagheer
Khan, Muhammad Adnan
Rahman, Atta-ur
Sultan, Kiran
Mahmud, Maqsood
Mosavi, Amir
Editors
Rehman, Ateeq UrAffiliation
National College of Business Administration and Economics (Pakistan); Gachon University; University of Chester; University of Bahrain; Slovak University of Technology in BratislavaPublication Date
2022-10-07
Metadata
Show full item recordAbstract
With the emergence of the Internet of Things (IoT), investigation of different diseases in healthcare improved, and cloud computing helped to centralize the data and to access patient records throughout the world. In this way, the electrocardiogram (ECG) is used to diagnose heart diseases or abnormalities. The machine learning techniques have been used previously but are feature-based and not as accurate as transfer learning; the proposed development and validation of embedded device prove ECG arrhythmia by using the transfer learning (DVEEA-TL) model. This model is the combination of hardware, software, and two datasets that are augmented and fused and further finds the accuracy results in high proportion as compared to the previous work and research. In the proposed model, a new dataset is made by the combination of the Kaggle dataset and the other, which is made by taking the real-time healthy and unhealthy datasets, and later, the AlexNet transfer learning approach is applied to get a more accurate reading in terms of ECG signals. In this proposed research, the DVEEA-TL model diagnoses the heart abnormality in respect of accuracy during the training and validation stages as 99.9% and 99.8%, respectively, which is the best and more reliable approach as compared to the previous research in this field.Citation
Asif, R. N., Abbas, S., Khan, M. A., Sultan, K., Mahmud, M., & Mosavi, A. (2022). Development and validation of embedded device for electrocardiogram arrhythmia empowered with transfer learning. Computational Intelligence and Neuroscience, 2022(1), 1-15.Publisher
HindawiAdditional Links
http://dx.doi.org/10.1155/2022/5054641Type
ArticleLanguage
enISSN
1687-5265EISSN
1687-5273Sponsors
N/Aae974a485f413a2113503eed53cd6c53
10.1155/2022/5054641
Scopus Count
Collections
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/