Show simple item record

dc.contributor.authorGorshkov, Ilya
dc.contributor.authorMcInroy, Justin
dc.contributor.authorMudziiri Shumba, Tendai
dc.contributor.authorShpectorov, Sergey
dc.date.accessioned2024-08-20T08:21:39Z
dc.date.available2024-08-20T08:21:39Z
dc.date.issued2024-08-22
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/628958/1-s2.0-S0021869324004617-main.pdf?sequence=5
dc.identifier.citationGorshkov, I., McInroy, J., Mudziiri Shumba, T., & Shpectorov, S. (2025). Automorphism groups of axial algebras. Journal of Algebra, 661, 657-712. https://doi.org/10.1016/j.jalgebra.2024.08.007en_US
dc.identifier.issn0021-8693
dc.identifier.doi10.1016/j.jalgebra.2024.08.007
dc.identifier.urihttp://hdl.handle.net/10034/628958
dc.description.abstractAxial algebras are a class of commutative non-associative algebras which have a natural group of automorphisms, called the Miyamoto group. The motivating example is the Griess algebra which has the Monster sporadic simple group as its Miyamoto group. Previously, using an expansion algorithm, about 200 examples of axial algebras in the same class as the Griess algebra have been constructed in dimensions up to about 300. In this list, we see many reoccurring dimensions which suggests that there may be some unexpected isomorphisms. Such isomorphisms can be found when the full automorphism groups of the algebras are known. Hence, in this paper, we develop methods for computing the full automorphism groups of axial algebras and apply them to a number of examples of dimensions up to 151.en_US
dc.description.sponsorshipunfundeden_US
dc.publisherElsevieren_US
dc.relation.urlhttps://www.sciencedirect.com/science/article/pii/S0021869324004617
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subjectAxial algebrasen_US
dc.subjectAutomorphismsen_US
dc.titleAutomorphism groups of axial algebrasen_US
dc.typeArticleen_US
dc.identifier.eissn1090-266X
dc.contributor.departmentSobolev Institute of Mathematics; University of Chester; University of Bristol; University of Birminghamen_US
dc.identifier.journalJournal of Algebraen_US
dc.identifier.volume661
dc.date.accepted2024-08-19
rioxxterms.identifier.projectunfundeden_US
rioxxterms.versionVoRen_US
rioxxterms.licenseref.startdate2026-12-31
dc.source.beginpage657-712
dc.date.deposited2024-08-20en_US


Files in this item

Thumbnail
Name:
Publisher version
Thumbnail
Name:
1-s2.0-S0021869324004617-main.pdf
Size:
865.3Kb
Format:
PDF
Request:
Article - VoR

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/