Show simple item record

dc.contributor.authorHoult, James
dc.contributor.authorYan, Yubin
dc.date.accessioned2024-02-03T02:26:59Z
dc.date.available2024-02-03T02:26:59Z
dc.date.issued2024-01-23
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/628470/mathematics-12-00365-v2.pdf?sequence=2
dc.identifier.citationHoult, J., & Yan, Y. (2024). Numerical approximation for a stochastic fractional differential equation driven by integrated multiplicative noise. Mathematics, 12(3), 365. https://doi.org/10.3390/math12030365
dc.identifier.doi10.3390/math12030365
dc.identifier.urihttp://hdl.handle.net/10034/628470
dc.description.abstractWe consider a numerical approximation for stochastic fractional differential equations driven by integrated multiplicative noise. The fractional derivative is in the Caputo sense with the fractional order α∈(0,1), and the non-linear terms satisfy the global Lipschitz conditions. We first approximate the noise with the piecewise constant function to obtain the regularized stochastic fractional differential equation. By applying Minkowski’s inequality for double integrals, we establish that the error between the exact solution and the solution of the regularized problem has an order of O(Δtα) in the mean square norm, where Δt denotes the step size. To validate our theoretical conclusions, numerical examples are presented, demonstrating the consistency of the numerical results with the established theory.
dc.publisherMDPI
dc.relation.urihttps://creativecommons.org/licenses/by/4.0/
dc.relation.urlhttps://www.mdpi.com/2227-7390/12/3/365
dc.rightsLicence for VoR version of this article starting on 2024-01-23: https://creativecommons.org/licenses/by/4.0/
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceeissn: 2227-7390
dc.subjectGeneral Mathematics
dc.subjectEngineering (miscellaneous)
dc.subjectComputer Science (miscellaneous)
dc.titleNumerical Approximation for a Stochastic Fractional Differential Equation Driven by Integrated Multiplicative Noise
dc.typeArticle
dc.identifier.eissn2227-7390
dc.contributor.departmentUniversity of Chester
dc.date.updated2024-02-03T02:26:59Z


Files in this item

Thumbnail
Name:
mathematics-12-00365-v2.pdf
Size:
336.6Kb
Format:
PDF
Request:
Article - VoR

This item appears in the following Collection(s)

Show simple item record

Licence for VoR version of this article starting on 2024-01-23: https://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as Licence for VoR version of this article starting on 2024-01-23: https://creativecommons.org/licenses/by/4.0/