Show simple item record

dc.contributor.authorYan, Yubin
dc.contributor.authorYang, Jinping
dc.contributor.authorPani, Amiya
dc.contributor.authorGreen, Charles
dc.date.accessioned2023-11-30T15:12:45Z
dc.date.available2023-11-30T15:12:45Z
dc.date.issued2023-11-23
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/628317/Yan%20-%20Unconditionally%20Stable%20and%20Convergent.pdf?sequence=3
dc.identifier.citationYang, J., Green, C., Pani, A. K., & Yan, Y. (2024). Unconditionally stable and convergent difference scheme for superdiffusion with extrapolation. Journal of Scientific Computing, 98(1), article-number 12. https://doi.org/10.1007/s10915-023-02395-zen_US
dc.identifier.issn0885-7474en_US
dc.identifier.doi10.1007/s10915-023-02395-z
dc.identifier.urihttp://hdl.handle.net/10034/628317
dc.descriptionThe version of record of this article, first published in [Journal of Scientific Computing], is available online at Publisher’s website: https://doi.org/10.1007/s10915-023-02395-z
dc.description.abstractApproximating the Hadamard finite-part integral by the quadratic interpolation polynomials, we obtain a scheme for approximating the Riemann-Liouville fractional derivative of order α∈(1, 2) and the error is shown to have the asymptotic expansion (d3τ3-α+d4τ4-α+d5τ5-α+⋯)+(d2∗τ4+d3∗τ6+d4∗τ8+⋯) at any fixed time, where τ denotes the step size and dl, l=3, 4, ⋯ and dl∗, l=2, 3, ⋯ are some suitable constants. Applying the proposed scheme in temporal direction and the central difference scheme in spatial direction, a new finite difference method is developed for approximating the time fractional wave equation. The proposed method is unconditionally stable, convergent with order O(τ3-α), α∈(1, 2) and the error has the asymptotic expansion. Richardson extrapolation is applied to improve the accuracy of the numerical method. The convergence orders are O(τ4-α) and O(τ2(3-α)), α∈(1, 2), respectively, after first two extrapolations. Numerical examples are presented to show that the numerical results are consistent with the theoretical findings.en_US
dc.publisherSpringeren_US
dc.relation.urlhttps://link.springer.com/article/10.1007/s10915-023-02395-zen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectTime fractional wave equationen_US
dc.subjectHigher order schemeen_US
dc.subjectStabilityen_US
dc.subjectError estimatesen_US
dc.subjectAsymptotic expansionen_US
dc.subjectExtrapolationen_US
dc.titleUnconditionally stable and convergent difference scheme for superdiffusion with extrapolationen_US
dc.typeArticleen_US
dc.identifier.eissn1573-7691en_US
dc.contributor.departmentUniversity of Chester; Lvliang University; BITS-Pilani, KK Birla Goa Campusen_US
dc.identifier.journalJournal of Scientific Computingen_US
or.grant.openaccessYesen_US
rioxxterms.funderunfundeden_US
rioxxterms.identifier.projectunfundeden_US
rioxxterms.versionVoRen_US
rioxxterms.versionofrecord10.1007/s10915-023-02395-zen_US
dcterms.dateAccepted2023-10-17
rioxxterms.publicationdate2023-11-23
dc.date.deposited2023-11-30en_US


Files in this item

Thumbnail
Name:
Yan - Unconditionally Stable and ...
Size:
3.569Mb
Format:
PDF
Request:
Article - VoR

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/