Reversible Quantum-Dot Cellular Automata-Based Arithmetic Logic Unit
Affiliation
Liverpool John Moores University; University of ChesterPublication Date
2023-08-29
Metadata
Show full item recordAbstract
Quantum-dot cellular automata (QCA) are a promising nanoscale computing technology that exploits the quantum mechanical tunneling of electrons between quantum dots in a cell andelectrostatic interaction between dots in neighboring cells. QCA can achieve higher speed, lowerpower, and smaller areas than conventional, complementary metal-oxide semiconductor (CMOS) technology. Developing QCA circuits in a logically and physically reversible manner can provide exceptional reductions in energy dissipation. The main challenge is to maintain reversibility down to the physical level. A crucial component of a computer’s central processing unit (CPU) is the arithmetic logic unit (ALU), which executes multiple logical and arithmetic functions on the data processed by the CPU. Current QCA ALU designs are either irreversible or logically reversible; however, they lack physical reversibility, a crucial requirement to increase energy efficiency. This paper shows a new multilayer design for a QCA ALU that can carry out 16 different operations and is both logically and physically reversible. The design is based on reversible majority gates, which are the key building blocks. We use QCA Designer-E software to simulate and evaluate energy dissipation. The proposed logically and physically reversible QCA ALU offers an improvement of 88.8% in energy efficiency. Compared to the next most efficient 16-operation QCA ALU, this ALU uses 51% fewer QCA cells and 47% less area.Citation
Alharbi, M., Edwards, G., & Stocker, R. (2023). Reversible Quantum-Dot Cellular Automata-Based Arithmetic Logic Unit. Nanomaterials, 13(17), 2445-2496. https://doi.org/10.3390/nano13172445Publisher
MDPIJournal
NanomaterialsAdditional Links
https://www.mdpi.com/2079-4991/13/17/2445Type
ArticleEISSN
2079-4991ae974a485f413a2113503eed53cd6c53
10.3390/nano13172445
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons