Show simple item record

dc.contributor.authorWen, Guo-Yu
dc.contributor.authorZhou, Xing-Long
dc.contributor.authorTian, Xiao-Yu
dc.contributor.authorXie, Rui
dc.contributor.authorJu, Xiao-Jie
dc.contributor.authorLiu, Zhuang
dc.contributor.authorFaraj, Yousef
dc.contributor.authorWang, Wei
dc.contributor.authorChu, Liang-Yin
dc.identifier.citationWen, G.-Y., Zhou, X.-L., Tian, X.-Y., Xie, R., Ju, X.-J., Liu, Z., Faraj, Y., Wang, W., & Chu, L.-Y. (2022). Smart hydrogels with wide visible color tunability. NPG Asia Materials, 14(1), 29.
dc.description.abstractPigmentary coloration can produce viewing angle-independent uniform colors via light absorption by chromophores. However, due to the limited diversity in the changes of the molecular configuration of chromophores to undergo color change, the existing materials cannot produce a wide range of visible colors with tunable color saturation and transmittance. Herein, we propose a novel strategy to create materials with a wide visible color range and highly tunable color saturation and transmittance. We fabricated a hydrogel with poly (acrylamide-co-dopamine acrylamide) networks swollen with Fe3+-containing glycerol/water in which the covalently crosslinked polyacrylamide backbone with pendant catechols can ensure that the hydrogel maintains a very stable shape. Hydrogels containing adjustable catechol-Fe3+ coordination bonds with flexible light-interacting configuration changes can display a wide range of visible colors based on the complementary color principle. The catechol-Fe3+ complexes can dynamically switch between noncoordinated and mono-, bis- and tris-coordinated states to harvest light energy from a specific wavelength across the whole visible spectrum. Therefore, these hydrogels can be yellow, green, blue, and red, covering the three primary colors. Moreover, color saturation and transmittance can be flexibly manipulated by simply adjusting the Fe3+ content in the hydrogel networks. The versatility of these smart hydrogels has been demonstrated through diverse applications, including optical filters for color regulation and colorimetric sensors for detecting UV light and chemical vapors. This proposed smart hydrogel provides a universal color-switchable platform for the development of multifunctional optical systems such as optical filters, sensors, and detectors.en_US
dc.publisherSpringer Natureen_US
dc.subjectGels and hydrogelsen_US
dc.titleSmart hydrogels with wide visible color tunabilityen_US
dc.contributor.departmentUniversity of Chester; Sichuan Universityen_US
dc.identifier.journalNPG Asia Materialsen_US
rioxxterms.funderNational Natural Science Foundation of China, the Program for Changjiang Scholars and Innovative Research Team in University and Sichuan Universityen_US
rioxxterms.identifier.projectNational Natural Science Foundation of China (21991101, 21922809), the Program for Changjiang Scholars and Innovative Research Team in University (IRT15R48) and Sichuan University (2020SCUNG112)en_US

Files in this item

Smart hydrogels with wide visible ...
Main Article-Published

This item appears in the following Collection(s)

Show simple item record
Except where otherwise noted, this item's license is described as