Show simple item record

dc.contributor.authorMartini, Maria
dc.contributor.authorAdhuran, Jayasingham
dc.contributor.authorKhan, Nabeel
dc.date.accessioned2022-11-28T13:42:22Z
dc.date.available2022-11-28T13:42:22Z
dc.date.issued2022-11-14
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/627333/Manuscript.pdf?sequence=1
dc.identifier.citationMartini, M., Adhuran, J., & Khan, K. (2022). Lossless compression of neuromorphic vision sensor data based on point cloud representation. IEEE Access, 10, 121352-121364. https://doi.org/10.1109/ACCESS.2022.3222330.en_US
dc.identifier.doi10.1109/ACCESS.2022.3222330
dc.identifier.urihttp://hdl.handle.net/10034/627333
dc.description.abstractVisual information varying over time is typically captured by cameras that acquire data via images (frames) equally spaced in time. Using a different approach, Neuromorphic Vision Sensors (NVSs) are emerging visual capturing devices that only acquire information when changes occur in the scene. This results in major advantages in terms of low power consumption, wide dynamic range, high temporal resolution, and lower data rates than conventional video. Although the acquisition strategy already results in much lower data rates than conventional video, such data can be further compressed. To this end, in this paper we propose a lossless compression strategy based on point cloud compression, inspired by the observation that, by appropriately reporting NVS data in a $(x,y,t)$ tridimensional space, we have a point cloud representation of NVS data. The proposed strategy outperforms the benchmark strategies resulting in a compression ratio up to 30% higher for the considered.en_US
dc.publisherIEEEen_US
dc.relation.urlhttps://ieeexplore.ieee.org/document/9950514en_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.subjectNeuromorphic vision sensor (NVS)en_US
dc.subjectNeuromorphic spike eventsen_US
dc.subjectPoint cloud compressionen_US
dc.subjectGeometric point cloud compression (GPCC)en_US
dc.subjectSilicon retinasen_US
dc.subjectSpike encodingen_US
dc.subjectData compressionen_US
dc.titleLossless Compression of Neuromorphic Vision Sensor Data Based on Point Cloud Representationen_US
dc.typeArticleen_US
dc.identifier.eissn2169-3536en_US
dc.contributor.departmentKingston University London; University of Chesteren_US
dc.identifier.journalIEEE Accessen_US
or.grant.openaccessYesen_US
rioxxterms.funderEPSRCen_US
rioxxterms.identifier.projectEP/PO22715/1en_US
rioxxterms.versionVoRen_US
rioxxterms.versionofrecord10.1109/ACCESS.2022.3222330en_US
dcterms.dateAccepted2022-11-02
rioxxterms.publicationdate2022-11-14
dc.date.deposited2022-11-28en_US
dc.indentifier.issnNo print ISSNen_US


Files in this item

Thumbnail
Name:
Manuscript.pdf
Size:
1.770Mb
Format:
PDF
Request:
Article - VoR

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International