Abstract
In this work, we present a matrix construction for reversible codes derived from skew dihedral group rings. By employing this matrix construction, the ring {F}_{j, k} and its associated Gray maps, we show how one can construct reversible codes of length n2^{j+k} over the finite field {F}_4. As an application, we construct a number of DNA codes that satisfy the Hamming distance, the reverse, the reverse-complement, and the GC-content constraints with better parameters than some good DNA codes in the literature.Citation
Advances in Mathematics of Communications, volume 0, issue 0, page 0Type
articleDescription
From Crossref journal articles via Jisc Publications RouterPublication status: Published