Show simple item record

dc.contributor.authorGreen, Charles
dc.contributor.authorLiu, Yanzhi
dc.contributor.authorYan, Yubin
dc.date.accessioned2022-05-20T12:16:54Z
dc.date.available2022-05-20T12:16:54Z
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/626879/greliuyan.pdf?sequence=1
dc.identifier.citationGreen, C. W. H., Liu, Y., & Yan, Y. (2021). Numerical Methods for Caputo–Hadamard Fractional Differential Equations with Graded and Non-Uniform Meshes. Mathematics, 9(21), 2728. https://doi.org/10.3390/math9212728en_US
dc.identifier.urihttp://hdl.handle.net/10034/626879
dc.description.abstractWe consider the predictor-corrector numerical methods for solving Caputo-Hadamard fractional differential equation with the graded meshes $\log t_{j} = \log a + \big ( \log \frac{t_{N}}{a} \big ) \big ( \frac{j}{N} \big )^{r}, \, j=0, 1, 2, \dots, N$ with $a \geq 1$ and $ r \geq 1$, where $\log a = \log t_{0} < \log t_{1} < \dots < \log t_{N}= \log T$ is a partition of $[\log t_{0}, \log T]$. We also consider the rectangular and trapezoidal methods for solving Caputo-Hadamard fractional differential equation with the non-uniform meshes $\log t_{j} = \log a + \big ( \log \frac{t_{N}}{a} \big ) \frac{j (j+1)}{N(N+1)}, \, j=0, 1, 2, \dots, N$. Under the weak smoothness assumptions of the Caputo-Hadamard fractional derivative, e.g., $\prescript{}{CH}D^\alpha_{a,t}y(t) \notin C^{1}[a, T]$ with $ \alpha \in (0, 2)$, the optimal convergence orders of the proposed numerical methods are obtained by choosing the suitable graded mesh ratio $r \geq 1$. The numerical examples are given to show that the numerical results are consistent with the theoretical findings.en_US
dc.publisherMDPIen_US
dc.relation.urlhttps://www.mdpi.com/2227-7390/9/21/2728en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subjectCaputo fractional derivativeen_US
dc.subjectHadamard caputo fractional derivativeen_US
dc.subjectgraded meshesen_US
dc.subjecterror estimatesen_US
dc.titleNumerical methods for Caputo-Hadamard fractional differential equations with graded and non-uniform meshesen_US
dc.typeArticleen_US
dc.identifier.eissn2227-7390en_US
dc.contributor.departmentUniversity of Chester; Lvliang Universityen_US
dc.identifier.journalMathematicsen_US
or.grant.openaccessYesen_US
rioxxterms.funderunfundeden_US
rioxxterms.identifier.projectunfundeden_US
rioxxterms.versionAMen_US
rioxxterms.versionofrecord10.3390/math9212728en_US
rioxxterms.licenseref.startdate2022-05-20
dcterms.dateAccepted2021-10-25
rioxxterms.publicationdate2021-10-27
dc.date.deposited20/5/22en_US
dc.indentifier.issn2227-7390en_US


Files in this item

Thumbnail
Name:
greliuyan.pdf
Size:
430.2Kb
Format:
PDF
Request:
Main article

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/