Show simple item record

dc.contributor.authorHu, Ye
dc.contributor.authorLi, Changpin
dc.contributor.authorYan, Yubin
dc.date.accessioned2022-05-20T10:07:13Z
dc.date.available2022-05-20T10:07:13Z
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/626876/Huliyan_R2.pdf?sequence=1
dc.identifier.citationYe Hu, Changpin Li and Yubin Yan. (2022). Weak convergence of the L1 scheme for a stochastic subdiffusion problem driven by fractionally integrated additive noise. Applied Numerical Mathematics, 178(August 2022), 192-215. https://doi.org/10.1016/j.apnum.2022.04.004en_US
dc.identifier.urihttp://hdl.handle.net/10034/626876
dc.description.abstractThe weak convergence of a fully discrete scheme for approximating a stochastic subdiffusion problem driven by fractionally integrated additive noise is studied. The Caputo fractional derivative is approximated by the L1 scheme and the Riemann-Liouville fractional integral is approximated with the first order convolution quadrature formula. The noise is discretized by using the Euler method and the spatial derivative is approximated with the linear finite element method. Based on the nonsmooth data error estimates of the corresponding deterministic problem, the weak convergence orders of the fully discrete schemes for approximating the stochastic subdiffusion problem driven by fractionally integrated additive noise are proved by using the Kolmogorov equation approach. Numerical experiments are given to show that the numerical results are consistent with the theoretical results.en_US
dc.publisherElsevieren_US
dc.relation.urlhttps://www.sciencedirect.com/science/article/abs/pii/S0168927422000976?via%3Dihuben_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.subjectCaputo fractional derivative, L1 scheme, Stochastic PDEs, weak convergenceen_US
dc.titleWeak convergence of the L1 scheme for a stochastic subdiffusion problem driven by fractionally integrated additive noiseen_US
dc.typeArticleen_US
dc.contributor.departmentUniversity of Chester; Lvliang University; Shanghai Universityen_US
dc.identifier.journalApplied Numerical Mathematicsen_US
or.grant.openaccessYesen_US
rioxxterms.funderunfundeden_US
rioxxterms.identifier.projectunfundeden_US
rioxxterms.versionAMen_US
rioxxterms.versionofrecord10.1016/j.apnum.2022.04.004en_US
rioxxterms.licenseref.startdate2024-04-06
dcterms.dateAccepted2022-04-03
rioxxterms.publicationdate2022-04-06
dc.date.deposited20/5/22en_US
dc.indentifier.issn0168-9274en_US


Files in this item

Thumbnail
Name:
Huliyan_R2.pdf
Size:
416.1Kb
Format:
PDF
Request:
Main article

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/