• Login / Register
    View Item 
    •   Home
    • Support Departments
    • Harvested data
    • View Item
    •   Home
    • Support Departments
    • Harvested data
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of ChesterRepCommunitiesTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournalProfilesView

    My Account

    LoginRegister

    About

    AboutUniversity of Chester

    Statistics

    Display statistics

    New type I binary $[72, 36, 12]$ self-dual codes from $M_6(\mathbb{F}_2)G$ - Group matrix rings by a hybrid search technique based on a neighbourhood-virus optimisation algorithm

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Korban, Adrian
    Sahinkaya, Serap
    Ustun, Deniz
    Publication Date
    2022
    
    Metadata
    Show full item record
    Abstract
    <p style='text-indent:20px;'>In this paper, a new search technique based on a virus optimisation algorithm is proposed for calculating the neighbours of binary self-dual codes. The aim of this new technique is to calculate neighbours of self-dual codes without reducing the search field in the search process (this technique is known in the literature due to the computational time constraint) but still obtaining results in a reasonable time (significantly faster when compared to the standard linear computational search). We employ this new search algorithm to the well-known neighbour method and its extension, the <inline-formula><tex-math id="M1">\begin{document}$ k^{th} $\end{document}</tex-math></inline-formula>-range neighbours, and search for binary <inline-formula><tex-math id="M2">\begin{document}$ [72, 36, 12] $\end{document}</tex-math></inline-formula> self-dual codes. In particular, we present six generator matrices of the form <inline-formula><tex-math id="M3">\begin{document}$ [I_{36} \ | \ \tau_6(v)], $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M4">\begin{document}$ I_{36} $\end{document}</tex-math></inline-formula> is the <inline-formula><tex-math id="M5">\begin{document}$ 36 \times 36 $\end{document}</tex-math></inline-formula> identity matrix, <inline-formula><tex-math id="M6">\begin{document}$ v $\end{document}</tex-math></inline-formula> is an element in the group matrix ring <inline-formula><tex-math id="M7">\begin{document}$ M_6(\mathbb{F}_2)G $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$ G $\end{document}</tex-math></inline-formula> is a finite group of order 6, to which we employ the proposed algorithm and search for binary <inline-formula><tex-math id="M9">\begin{document}$ [72, 36, 12] $\end{document}</tex-math></inline-formula> self-dual codes directly over the finite field <inline-formula><tex-math id="M10">\begin{document}$ \mathbb{F}_2 $\end{document}</tex-math></inline-formula>. We construct 1471 new Type I binary <inline-formula><tex-math id="M11">\begin{document}$ [72, 36, 12] $\end{document}</tex-math></inline-formula> self-dual codes with the rare parameters <inline-formula><tex-math id="M12">\begin{document}$ \gamma = 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 32 $\end{document}</tex-math></inline-formula> in their weight enumerators.</p>
    Citation
    Advances in Mathematics of Communications, volume 0, issue 0, page 0
    Publisher
    American Institute of Mathematical Sciences (AIMS)
    URI
    http://hdl.handle.net/10034/626860
    Type
    article
    Description
    From Crossref journal articles via Jisc Publications Router
    Publication status: Published
    Collections
    Harvested data

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.