Show simple item record

dc.contributor.authorYan, Yubin
dc.contributor.authorYan, Yuyuan
dc.contributor.authorLiang, Zongqi
dc.contributor.authorEgwu, Bernard
dc.date.accessioned2021-10-01T08:31:22Z
dc.date.available2021-10-01T08:31:22Z
dc.date.issued2021-07-29
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/626002/yanlianyan_JSC.pdf?sequence=1
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/626002/ErrorEstimatesOfAContinuousGal.pdf?sequence=5
dc.identifier.citationYan, Y., Egwu, B. A., Liang, Z., Yan, Y. (2021). Error estimates of a continuous Galerkin Time Stepping Method for subdiffusion problem. Journal of Scientific Computing, 88, 68. https://doi.org/10.1007/s10915-021-01587-9en_US
dc.identifier.issn0885-7474
dc.identifier.doi10.1007/s10915-021-01587-9
dc.identifier.urihttp://hdl.handle.net/10034/626002
dc.descriptionThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10915-021-01587-9en_US
dc.description.abstractA continuous Galerkin time stepping method is introduced and analyzed for subdiffusion problem in an abstract setting. The approximate solution will be sought as a continuous piecewise linear function in time $t$ and the test space is based on the discontinuous piecewise constant functions. We prove that the proposed time stepping method has the convergence order $O(\tau^{1+ \alpha}), \, \alpha \in (0, 1)$ for general sectorial elliptic operators for nonsmooth data by using the Laplace transform method, where $\tau$ is the time step size. This convergence order is higher than the convergence orders of the popular convolution quadrature methods (e.g., Lubich's convolution methods) and L-type methods (e.g., L1 method), which have only $O(\tau)$ convergence for the nonsmooth data. Numerical examples are given to verify the robustness of the time discretization schemes with respect to data regularity.en_US
dc.publisherSpringeren_US
dc.relation.urlhttps://link.springer.com/article/10.1007/s10915-021-01587-9en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectSubdiffusion problemen_US
dc.subjectcontinuous Galerkin time stepping methoden_US
dc.subjectLaplace transformen_US
dc.subjectCaputo fractional derivativeen_US
dc.titleError estimates of a continuous Galerkin time stepping method for subdiffusion problemen_US
dc.typeArticleen_US
dc.identifier.eissn1573-7691en_US
dc.contributor.departmentJimei University; University of Chesteren_US
dc.identifier.journalJournal of Scientific Computingen_US
or.grant.openaccessYesen_US
rioxxterms.funderunfundeden_US
rioxxterms.identifier.projectunfundeden_US
rioxxterms.versionAMen_US
rioxxterms.versionofrecord10.1007/s10915-021-01587-9en_US
rioxxterms.licenseref.startdate2022-07-29
dcterms.dateAccepted2021-07-20
rioxxterms.publicationdate2021-07-29
dc.date.deposited2021-10-01en_US
dc.indentifier.issn0885-7474en_US


Files in this item

Thumbnail
Name:
ErrorEstimatesOfAContinuousGal.pdf
Size:
522.4Kb
Format:
PDF
Request:
Article - VoR
Thumbnail
Name:
yanlianyan_JSC.pdf
Size:
381.9Kb
Format:
PDF
Request:
Main article

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/