Show simple item record

dc.contributor.authorLockyer, Selena J
dc.contributor.authorChiesa, Alessandro; orcid: 0000-0003-2955-3998
dc.contributor.authorTimco, Grigore A; orcid: 0000-0003-0966-0315
dc.contributor.authorMcInnes, Eric J L
dc.contributor.authorBennett, Tom S
dc.contributor.authorVitorica-Yrezebal, Inigo J; orcid: 0000-0001-8806-150X
dc.contributor.authorCarretta, Stefano; orcid: 0000-0002-2536-1326
dc.contributor.authorWinpenny, Richard E P; orcid: 0000-0002-7101-3963
dc.date.accessioned2021-08-20T01:06:28Z
dc.date.available2021-08-20T01:06:28Z
dc.date.issued2021-06-02
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/625635/article.pdf?sequence=2
dc.identifier.citationChemical science, volume 12, issue 26, page 9104-9113
dc.identifier.urihttp://hdl.handle.net/10034/625635
dc.descriptionFrom Europe PMC via Jisc Publications Router
dc.descriptionHistory: epub 2021-06-02, ppub 2021-07-01
dc.descriptionPublication status: Published
dc.descriptionFunder: European Research Council; Grant(s): 786734, 862893
dc.description.abstractThe implementation of a quantum computer requires both to protect information from environmental noise and to implement quantum operations efficiently. Achieving this by a fully fault-tolerant platform, in which quantum gates are implemented within quantum-error corrected units, poses stringent requirements on the coherence and control of such hardware. A more feasible architecture could consist of connected memories, that support error-correction by enhancing coherence, and processing units, that ensure fast manipulations. We present here a supramolecular {Cr<sub>7</sub>Ni}-Cu system which could form the elementary unit of this platform, where the electronic spin 1/2 of {Cr<sub>7</sub>Ni} provides the processor and the naturally isolated nuclear spin 3/2 of the Cu ion is used to encode a logical unit with embedded quantum error-correction. We demonstrate by realistic simulations that microwave pulses allow us to rapidly implement gates on the processor and to swap information between the processor and the quantum memory. By combining the storage into the Cu nuclear spin with quantum error correction, information can be protected for times much longer than the processor coherence.
dc.languageeng
dc.rightsLicence for this article: cc by
dc.sourceissn: 2041-6520
dc.sourcenlmid: 101545951
dc.sourceessn: 2041-6539
dc.titleTargeting molecular quantum memory with embedded error correction.
dc.typearticle
dc.date.updated2021-08-20T01:06:28Z


Files in this item

Thumbnail
Name:
article.pdf
Size:
898.6Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record