Proton-coupled electron transfer reactivities of electronically divergent heme superoxide intermediates: a kinetic, thermodynamic, and theoretical study.
Authors
Mondal, Pritam; orcid: 0000-0002-7071-1970Ishigami, Izumi
Gérard, Emilie F
Lim, Chaeeun
Yeh, Syun-Ru
de Visser, Sam P; orcid: 0000-0002-2620-8788
Wijeratne, Gayan B; orcid: 0000-0001-7609-6406
Publication Date
2021-05-27
Metadata
Show full item recordAbstract
Heme superoxides are one of the most versatile metallo-intermediates in biology, and they mediate a vast variety of oxidation and oxygenation reactions involving O<sub>2(g)</sub>. Overall proton-coupled electron transfer (PCET) processes they facilitate may proceed <i>via</i> several different mechanistic pathways, attributes of which are not yet fully understood. Herein we present a detailed investigation into concerted PCET events of a series of geometrically similar, but electronically disparate synthetic heme superoxide mimics, where unprecedented, PCET feasibility-determining electronic effects of the heme center have been identified. These electronic factors firmly modulate both thermodynamic and kinetic parameters that are central to PCET, as supported by our experimental and theoretical observations. Consistently, the most electron-deficient superoxide adduct shows the strongest driving force for PCET, whereas the most electron-rich system remains unreactive. The pivotal role of these findings in understanding significant heme systems in biology, as well as in alternative energy applications is also discussed.Citation
Chemical science, volume 12, issue 25, page 8872-8883Type
articleDescription
From Europe PMC via Jisc Publications RouterHistory: epub 2021-05-27, ppub 2021-07-01
Publication status: Published
Funder: Biotechnology and Biological Sciences Research Council; Grant(s): BB/J014478/1