Use of Gaussian process regression for radiation mapping of a nuclear reactor with a mobile robot
Authors
West, Andrew; email: andrew.west@manchester.ac.ukTsitsimpelis, Ioannis
Licata, Mauro
Jazbec, Anz̆e
Snoj, Luka
Joyce, Malcolm J.
Lennox, Barry
Publication Date
2021-07-07Submitted date
2021-03-05
Metadata
Show full item recordAbstract
Abstract: Collection and interpolation of radiation observations is of vital importance to support routine operations in the nuclear sector globally, as well as for completing surveys during crisis response. To reduce exposure to ionizing radiation that human workers can be subjected to during such surveys, there is a strong desire to utilise robotic systems. Previous approaches to interpolate measurements taken from nuclear facilities to reconstruct radiological maps of an environment cannot be applied accurately to data collected from a robotic survey as they are unable to cope well with irregularly spaced, noisy, low count data. In this work, a novel approach to interpolating radiation measurements collected from a robot is proposed that overcomes the problems associated with sparse and noisy measurements. The proposed method integrates an appropriate kernel, benchmarked against the radiation transport code MCNP6, into the Gaussian Process Regression technique. The suitability of the proposed technique is demonstrated through its application to data collected from a bespoke robotic system used to conduct a survey of the Joz̆ef Stefan Institute TRIGA Mark II nuclear reactor during steady state operation, where it is shown to successfully reconstruct gamma dosimetry estimates in the reactor hall and aid in identifying sources of ionizing radiation.Citation
Scientific Reports, volume 11, issue 1, page 13975Publisher
Nature Publishing Group UKType
articleDescription
From Springer Nature via Jisc Publications RouterHistory: received 2021-03-05, accepted 2021-06-04, registration 2021-06-25, pub-electronic 2021-07-07, online 2021-07-07, collection 2021-12
Publication status: Published