Water friction in nanofluidic channels made from two-dimensional crystals.
Authors
Keerthi, AshokGoutham, Solleti
You, Yi
Iamprasertkun, Pawin; orcid: 0000-0001-8950-3330
Dryfe, Robert A W; orcid: 0000-0002-9335-4451
Geim, Andre K; orcid: 0000-0003-2861-8331
Radha, Boya; orcid: 0000-0003-1345-7029; email: radha.boya@manchester.ac.uk
Publication Date
2021-05-25
Metadata
Show full item recordAbstract
Membrane-based applications such as osmotic power generation, desalination and molecular separation would benefit from decreasing water friction in nanoscale channels. However, mechanisms that allow fast water flows are not fully understood yet. Here we report angstrom-scale capillaries made from atomically flat crystals and study the effect of confining walls' material on water friction. A massive difference is observed between channels made from isostructural graphite and hexagonal boron nitride, which is attributed to different electrostatic and chemical interactions at the solid-liquid interface. Using precision microgravimetry and ion streaming measurements, we evaluate the slip length, a measure of water friction, and investigate its possible links with electrical conductivity, wettability, surface charge and polarity of the confining walls. We also show that water friction can be controlled using hybrid capillaries with different slip lengths at opposing walls. The reported advances extend nanofluidics' toolkit for designing smart membranes and mimicking manifold machinery of biological channels.Citation
Nature communications, volume 12, issue 1, page 3092Type
articleDescription
From Europe PMC via Jisc Publications RouterHistory: ppub 2021-05-01, epub 2021-05-25
Publication status: Published
Funder: European Research Council; Grant(s): 852674