Show simple item record

dc.contributor.authorHerrera, Jeremy A.; orcid: 0000-0003-4845-8494; email: Jeremy.Herrera@manchester.ac.uk
dc.contributor.authorMallikarjun, Venkatesh
dc.contributor.authorRosini, Silvia
dc.contributor.authorMontero, Maria Angeles
dc.contributor.authorLawless, Craig
dc.contributor.authorWarwood, Stacey
dc.contributor.authorO’Cualain, Ronan
dc.contributor.authorKnight, David
dc.contributor.authorSchwartz, Martin A.
dc.contributor.authorSwift, Joe; orcid: 0000-0002-5039-9094; email: Joe.Swift@manchester.ac.uk
dc.date.accessioned2021-06-17T15:50:29Z
dc.date.available2021-06-17T15:50:29Z
dc.date.issued2020-06-17
dc.date.submitted2019-11-06
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/624973/12014_2020_9287_MOESM2_ESM.pdf?sequence=2
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/624973/12014_2020_Article_9287_nlm.xml?sequence=3
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/624973/12014_2020_Article_9287.pdf?sequence=4
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/624973/additional-files.zip?sequence=5
dc.identifier.citationClinical Proteomics, volume 17, issue 1, page 24
dc.identifier.urihttp://hdl.handle.net/10034/624973
dc.descriptionFrom Springer Nature via Jisc Publications Router
dc.descriptionHistory: received 2019-11-06, accepted 2020-06-11, registration 2020-06-11, pub-electronic 2020-06-17, online 2020-06-17, pub-print 2020-12
dc.descriptionPublication status: Published
dc.descriptionFunder: Wellcome Trust; doi: http://dx.doi.org/10.13039/100004440; Grant(s): 203128/Z/16/Z
dc.descriptionFunder: Biotechnology and Biological Sciences Research Council; doi: http://dx.doi.org/10.13039/501100000268; Grant(s): BB/L024551/1
dc.description.abstractAbstract: Background: Haematoxylin and eosin (H&E)—which respectively stain nuclei blue and other cellular and stromal material pink—are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues. Methods: Herein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm3) and human lung blood vessels (0.094 mm3) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes. Results: This approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm3. Conclusion: Herein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues.
dc.languageen
dc.publisherBioMed Central
dc.rightsLicence for this article: http://creativecommons.org/licenses/by/4.0/
dc.sourcepissn: 1542-6416
dc.sourceeissn: 1559-0275
dc.subjectResearch
dc.titleLaser capture microdissection coupled mass spectrometry (LCM-MS) for spatially resolved analysis of formalin-fixed and stained human lung tissues
dc.typearticle
dc.date.updated2021-06-17T15:50:29Z
dc.date.accepted2020-06-11


Files in this item

Thumbnail
Name:
12014_2020_9287_MOESM2_ESM.pdf
Size:
68.58Kb
Format:
PDF
Thumbnail
Name:
12014_2020_Article_9287_nlm.xml
Size:
113.4Kb
Format:
XML
Thumbnail
Name:
12014_2020_Article_9287.pdf
Size:
3.143Mb
Format:
PDF
Thumbnail
Name:
additional-files.zip
Size:
772.3Kb
Format:
Unknown

This item appears in the following Collection(s)

Show simple item record