Show simple item record

dc.contributor.authorBouttemy, Muriel; orcid: 0000-0001-5907-2576; email: muriel.bouttemy@uvsq.fr
dc.contributor.authorBéchu, Solène; email: solene.bechu@uvsq.fr
dc.contributor.authorSpencer, Ben F.; email: ben.spencer@manchester.ac.uk
dc.contributor.authorDally, Pia; email: pia.dally@ipvf.fr
dc.contributor.authorChapon, Patrick; email: patrick.chapon@horiba.com
dc.contributor.authorEtcheberry, Arnaud; email: arnaud.etcheberry@uvsq.fr
dc.date.accessioned2021-06-13T00:02:55Z
dc.date.available2021-06-13T00:02:55Z
dc.date.issued2021-06-11
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/624925/additional-files.zip?sequence=2
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/624925/coatings-11-00702.xml?sequence=3
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/624925/coatings-11-00702.pdf?sequence=4
dc.identifier.citationCoatings, volume 11, issue 6, page e702
dc.identifier.urihttp://hdl.handle.net/10034/624925
dc.descriptionFrom MDPI via Jisc Publications Router
dc.descriptionHistory: accepted 2021-06-07, pub-electronic 2021-06-11
dc.descriptionPublication status: Published
dc.descriptionFunder: Henry Royce Institute; Grant(s): EP/R00661X/1, EP/P025021/1, EP/P025498/1
dc.description.abstractChemical characterization at buried interfaces is a real challenge, as the physico-chemical processes operating at the interface govern the properties of many systems and devices. We have developed a methodology based on the combined use of pulsed RF GD-OES (pulsed Radio Frequency Glow Discharge Optical Emission Spectrometry) and XPS (X-ray Photoelectron Spectroscopy) to facilitate the access to deeply buried locations (taking advantage of the high profiling rate of the GD-OES) and perform an accurate chemical diagnosis using XPS directly inside the GD crater. The reliability of the chemical information is, however, influenced by a perturbed layer present at the surface of the crater, hindering traditional XPS examination due to a relatively short sampling depth. Sampling below the perturbed layer may, however, can be achieved using a higher energy excitation source with an increased sampling depth, and is enabled here by a new laboratory-based HAXPES (Hard X-ray PhotoElectron Spectroscopy) (Ga-Kα, 9.25 keV). This new approach combining HAXPES with pulsed RF GD-OES requires benchmarking and is here demonstrated and evaluated on InP. The perturbed depth is estimated and the consistency of the chemical information measured is demonstrated, offering a new route for advanced chemical depth profiling through coatings and heterostructures.
dc.languageen
dc.publisherMDPI
dc.rightsLicence for this article: https://creativecommons.org/licenses/by/4.0/
dc.sourceeissn: 2079-6412
dc.subjectpulsed RF GD-OES
dc.subjectXPS
dc.subjectHAXPES
dc.subjectdepth profiling
dc.subjectcrater chemistry
dc.subjectplasma-induced perturbation
dc.subjectInP
dc.subjectmetrology
dc.subjectquantitative analyses
dc.titleCombined Pulsed RF GD-OES and HAXPES for Quantified Depth Profiling through Coatings
dc.typearticle
dc.date.updated2021-06-13T00:02:55Z
dc.date.accepted2021-06-07


Files in this item

Thumbnail
Name:
additional-files.zip
Size:
439.3Kb
Format:
Unknown
Thumbnail
Name:
coatings-11-00702.xml
Size:
9.068Kb
Format:
XML
Thumbnail
Name:
coatings-11-00702.pdf
Size:
1.733Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record