Show simple item record

dc.contributor.authorKeerthi, Ashok
dc.contributor.authorGoutham, Solleti
dc.contributor.authorYou, Yi
dc.contributor.authorIamprasertkun, Pawin; orcid: 0000-0001-8950-3330
dc.contributor.authorDryfe, Robert A. W.; orcid: 0000-0002-9335-4451
dc.contributor.authorGeim, Andre K.; orcid: 0000-0003-2861-8331
dc.contributor.authorRadha, Boya; orcid: 0000-0003-1345-7029; email: radha.boya@manchester.ac.uk
dc.date.accessioned2021-05-25T15:24:06Z
dc.date.available2021-05-25T15:24:06Z
dc.date.issued2021-05-25
dc.date.submitted2020-11-13
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/624697/41467_2021_Article_23325_nlm.xml?sequence=2
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/624697/41467_2021_23325_MOESM1_ESM.pdf?sequence=3
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/624697/41467_2021_Article_23325.pdf?sequence=4
dc.identifier.citationNature Communications, volume 12, issue 1, page 3092
dc.identifier.urihttp://hdl.handle.net/10034/624697
dc.descriptionFrom Springer Nature via Jisc Publications Router
dc.descriptionHistory: received 2020-11-13, accepted 2021-04-20, registration 2021-04-26, pub-electronic 2021-05-25, online 2021-05-25, collection 2021-12
dc.descriptionPublication status: Published
dc.descriptionFunder: RCUK | Engineering and Physical Sciences Research Council (EPSRC); doi: https://doi.org/10.13039/501100000266; Grant(s): EP/S017593/1
dc.descriptionFunder: Royal Society; doi: https://doi.org/10.13039/501100000288; Grant(s): URF\R1\180127, RGS\R2\202036
dc.descriptionFunder: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council); doi: https://doi.org/10.13039/100010663; Grant(s): 852674 - AngstroCAP
dc.descriptionFunder: Ramsay Memorial Fellowship
dc.description.abstractAbstract: Membrane-based applications such as osmotic power generation, desalination and molecular separation would benefit from decreasing water friction in nanoscale channels. However, mechanisms that allow fast water flows are not fully understood yet. Here we report angstrom-scale capillaries made from atomically flat crystals and study the effect of confining walls’ material on water friction. A massive difference is observed between channels made from isostructural graphite and hexagonal boron nitride, which is attributed to different electrostatic and chemical interactions at the solid-liquid interface. Using precision microgravimetry and ion streaming measurements, we evaluate the slip length, a measure of water friction, and investigate its possible links with electrical conductivity, wettability, surface charge and polarity of the confining walls. We also show that water friction can be controlled using hybrid capillaries with different slip lengths at opposing walls. The reported advances extend nanofluidics’ toolkit for designing smart membranes and mimicking manifold machinery of biological channels.
dc.languageen
dc.publisherNature Publishing Group UK
dc.rightsLicence for this article: http://creativecommons.org/licenses/by/4.0/
dc.sourceeissn: 2041-1723
dc.subjectArticle
dc.subject/639/301/119/544
dc.subject/639/925/918/1053
dc.subject/639/925/927/351
dc.subject/639/925/357/1018
dc.subject/120
dc.subject/142/126
dc.subject/128
dc.subjectarticle
dc.titleWater friction in nanofluidic channels made from two-dimensional crystals
dc.typearticle
dc.date.updated2021-05-25T15:24:05Z
dc.date.accepted2021-04-20


Files in this item

Thumbnail
Name:
41467_2021_Article_23325_nlm.xml
Size:
94.41Kb
Format:
XML
Thumbnail
Name:
41467_2021_23325_MOESM1_ESM.pdf
Size:
1.203Mb
Format:
PDF
Thumbnail
Name:
41467_2021_Article_23325.pdf
Size:
1004.Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record