Show simple item record

dc.contributor.authorJasra, Ajay
dc.contributor.authorLaw, Kody J. H.; orcid: 0000-0003-3133-2537; email: kody.law@manchester.ac.uk
dc.contributor.authorLu, Deng
dc.date.accessioned2021-05-20T16:38:02Z
dc.date.available2021-05-20T16:38:02Z
dc.date.issued2021-03-03
dc.date.submitted2020-03-10
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/624546/11222_2021_Article_9994.pdf?sequence=2
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/624546/11222_2021_Article_9994_nlm.xml?sequence=3
dc.identifier.citationStatistics and Computing, volume 31, issue 3, page 21
dc.identifier.urihttp://hdl.handle.net/10034/624546
dc.descriptionFrom Springer Nature via Jisc Publications Router
dc.descriptionHistory: received 2020-03-10, registration 2021-01-07, accepted 2021-01-07, pub-electronic 2021-03-03, online 2021-03-03, pub-print 2021-05
dc.descriptionPublication status: Published
dc.descriptionFunder: King Abdullah University of Science and Technology; doi: http://dx.doi.org/10.13039/501100004052; Grant(s): Baseline
dc.descriptionFunder: Alan Turing Institute; doi: http://dx.doi.org/10.13039/100012338
dc.description.abstractAbstract: We consider the problem of estimating a parameter θ∈Θ⊆Rdθ associated with a Bayesian inverse problem. Typically one must resort to a numerical approximation of gradient of the log-likelihood and also adopt a discretization of the problem in space and/or time. We develop a new methodology to unbiasedly estimate the gradient of the log-likelihood with respect to the unknown parameter, i.e. the expectation of the estimate has no discretization bias. Such a property is not only useful for estimation in terms of the original stochastic model of interest, but can be used in stochastic gradient algorithms which benefit from unbiased estimates. Under appropriate assumptions, we prove that our estimator is not only unbiased but of finite variance. In addition, when implemented on a single processor, we show that the cost to achieve a given level of error is comparable to multilevel Monte Carlo methods, both practically and theoretically. However, the new algorithm is highly amenable to parallel computation.
dc.languageen
dc.publisherSpringer US
dc.rightsLicence for this article: http://creativecommons.org/licenses/by/4.0/
dc.sourcepissn: 0960-3174
dc.sourceeissn: 1573-1375
dc.subjectArticle
dc.subjectParameter estimation
dc.subjectInverse problems
dc.subjectUnbiased estimation
dc.subjectStochastic gradient
dc.titleUnbiased estimation of the gradient of the log-likelihood in inverse problems
dc.typearticle
dc.date.updated2021-05-20T16:38:01Z
dc.date.accepted2021-01-07


Files in this item

Thumbnail
Name:
11222_2021_Article_9994.pdf
Size:
1.236Mb
Format:
PDF
Thumbnail
Name:
11222_2021_Article_9994_nlm.xml
Size:
777.3Kb
Format:
XML

This item appears in the following Collection(s)

Show simple item record