Show simple item record

dc.contributor.authorDougherty, Steven
dc.contributor.authorGildea, Joe
dc.contributor.authorKorban, Adrian
dc.contributor.authorKaya, Abidin
dc.date.accessioned2021-04-20T13:24:11Z
dc.date.available2021-04-20T13:24:11Z
dc.date.issued2021-05-19
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/624460/Dougherty2021_Article_CompositeMatricesFromGroupRing.pdf?sequence=5
dc.identifier.citationDougherty, S. T., Gildea, J., Korban, A., & Kaya, A. (2021). Composite matrices from group rings, composite G-Codes and constructions of self-dual codes. Designs, Codes and Cryptography, 89, 1615-1638. https://doi.org/10.1007/s10623-021-00882-8en_US
dc.identifier.issn0925-1022
dc.identifier.doi10.1007/s10623-021-00882-8
dc.identifier.urihttp://hdl.handle.net/10034/624460
dc.description.abstractIn this work, we define composite matrices which are derived from group rings. We extend the idea of G-codes to composite G-codes. We show that these codes are ideals in a group ring, where the ring is a finite commutative Frobenius ring and G is an arbitrary finite group. We prove that the dual of a composite G-code is also a composite G-code. We also define quasi-composite G-codes. Additionally, we study generator matrices, which consist of the identity matrices and the composite matrices. Together with the generator matrices, the well known extension method, the neighbour method and its generalization, we find extremal binary self-dual codes of length 68 with new weight enumerators for the rare parameters $\gamma$ = 7; 8 and 9: In particular, we find 49 new such codes. Moreover, we show that the codes we find are inaccessible from other constructions.en_US
dc.publisherSpringeren_US
dc.relation.urlhttps://link.springer.com/article/10.1007/s10623-021-00882-8
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subjectComposite Matricesen_US
dc.subjectgroup ringsen_US
dc.subjectcomposite G-codesen_US
dc.subjectself-orthogonal composite G-codesen_US
dc.subjectcodes over ringsen_US
dc.subjectself-dual codesen_US
dc.titleComposite Matrices from Group Rings, Composite G-Codes and Constructions of Self-Dual Codesen_US
dc.typeArticleen_US
dc.identifier.eissn1573-7586en_US
dc.contributor.departmentUniversity of Scranton; University of Chester; Harmony School of Technologyen_US
dc.identifier.journalDesigns, Codes and Cryptographyen_US
or.grant.openaccessYesen_US
rioxxterms.funderunfundeden_US
rioxxterms.identifier.projectunfundeden_US
rioxxterms.versionVoRen_US
rioxxterms.licenseref.startdate2022-05-19
dcterms.dateAccepted2021-04-16
rioxxterms.publicationdate2021-05-19
dc.date.deposited2021-04-20en_US


Files in this item

Thumbnail
Name:
Dougherty2021_Article_Composit ...
Size:
426.7Kb
Format:
PDF
Request:
Article - VoR

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/