Show simple item record

dc.contributor.authorGildea, Joe
dc.contributor.authorTaylor, Rhian; orcid: 0000-0002-8563-2212; email: rhian.taylor@chester.ac.uk
dc.contributor.authorKaya, Abidin
dc.contributor.authorTylyshchak, A.
dc.date.accessioned2021-01-08T17:21:14Z
dc.date.available2021-01-08T17:21:14Z
dc.date.issued2020-01-09
dc.date.submitted2019-06-03
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/624156/12095_2019_Article_420.pdf?sequence=2
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/624156/12095_2019_Article_420_nlm.xml?sequence=3
dc.identifier.citationCryptography and Communications, volume 12, issue 4, page 769-784
dc.identifier.urihttp://hdl.handle.net/10034/624156
dc.descriptionFrom Springer Nature via Jisc Publications Router
dc.descriptionHistory: received 2019-06-03, accepted 2019-12-05, registration 2019-12-06, online 2020-01-09, pub-electronic 2020-01-09, pub-print 2020-07
dc.descriptionPublication status: Published
dc.description.abstractAbstract: In this work, we describe a double bordered construction of self-dual codes from group rings. We show that this construction is effective for groups of order 2p where p is odd, over the rings F2+uF2 and F4+uF4. We demonstrate the importance of this new construction by finding many new binary self-dual codes of lengths 64, 68 and 80; the new codes and their corresponding weight enumerators are listed in several tables.
dc.languageen
dc.publisherSpringer US
dc.rightsLicence for this article: http://creativecommons.org/licenses/by/4.0/
dc.sourcepissn: 1936-2447
dc.sourceeissn: 1936-2455
dc.subjectArticle
dc.subjectGroup rings
dc.subjectSelf-dual codes
dc.subjectCodes over rings
dc.subjectExtremal codes
dc.subjectBordered constructions
dc.subject94B05
dc.subject94B15
dc.titleDouble bordered constructions of self-dual codes from group rings over Frobenius rings
dc.typearticle
dc.date.updated2021-01-08T17:21:13Z
dc.date.accepted2019-12-05


Files in this item

Thumbnail
Name:
12095_2019_Article_420.pdf
Size:
977.2Kb
Format:
PDF
Thumbnail
Name:
12095_2019_Article_420_nlm.xml
Size:
321.3Kb
Format:
XML

This item appears in the following Collection(s)

Show simple item record