Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
Affiliation
University of Scranton; University of Chester; Sampoerna AcademyPublication Date
2020-08-04
Metadata
Show full item recordAbstract
Self-dual codes, which are codes that are equal to their orthogonal, are a widely studied family of codes. Various techniques involving circulant matrices and matrices from group rings have been used to construct such codes. Moreover, families of rings have been used, together with a Gray map, to construct binary self-dual codes. In this paper, we introduce a new bordered construction over group rings for self-dual codes by combining many of the previously used techniques. The purpose of this is to construct self-dual codes that were missed using classical construction techniques by constructing self-dual codes with different automorphism groups. We apply the technique to codes over finite commutative Frobenius rings of characteristic 2 and several group rings and use these to construct interesting binary self-dual codes. In particular, we construct some extremal self-dual codes length 64 and 68, constructing 30 new extremal self-dual codes of length 68.Citation
Dougherty, S., Gildea, J. & Kaya, A. (2020). 2^n Bordered Constructions of Self-Dual codes from Group Rings. Finite Fields and Their Applications, 67, 101692. https://doi.org/10.1016/j.ffa.2020.101692Publisher
ElsevierType
ArticleISSN
1071-5797ae974a485f413a2113503eed53cd6c53
10.1016/j.ffa.2020.101692
Scopus Count
Collections
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/