Show simple item record

dc.contributor.authorYan, Yubin
dc.contributor.authorQiao, Leijie
dc.contributor.authorXu, Da
dc.date.accessioned2020-02-26T08:53:31Z
dc.date.available2020-02-26T08:53:31Z
dc.date.issued2020-02-05
dc.identifier.citationQiao L, Xu D, Yan Y. (2020). High-order ADI orthogonal spline collocation method for a new 2D fractional integro-differential problem. Mathematical Methods in the Applied Sciences, 43(8), 1-17.en_US
dc.identifier.urihttp://hdl.handle.net/10034/623201
dc.descriptionThis is the peer reviewed version of the following article: Qiao L, Xu D, Yan Y. (2020). High-order ADI orthogonal spline collocation method for a new 2D fractional integro-differential problem. Mathematical Methods in the Applied Sciences, 1-17., which has been published in final form at https://doi.org/10.1002/mma.6258. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.en_US
dc.description.abstractWe use the generalized L1 approximation for the Caputo fractional deriva-tive, the second-order fractional quadrature rule approximation for the inte-gral term, and a classical Crank-Nicolson alternating direction implicit (ADI)scheme for the time discretization of a new two-dimensional (2D) fractionalintegro-differential equation, in combination with a space discretization by anarbitrary-order orthogonal spline collocation (OSC) method. The stability of aCrank-Nicolson ADI OSC scheme is rigourously established, and error estimateis also derived. Finally, some numerical tests are givenen_US
dc.publisherWileyen_US
dc.relation.urlhttps://onlinelibrary.wiley.com/doi/epdf/10.1002/mma.6258en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.subjectConvergenceen_US
dc.subjectCrank-Nicolson alternating direction implicit schemeen_US
dc.subjectOrthogonal spline collocation methoden_US
dc.subjectTwo-dimensional fractional integro-differential equationen_US
dc.titleHigh‐order ADI orthogonal spline collocation method for a new 2D fractional integro‐differential problemen_US
dc.typeArticleen_US
dc.identifier.eissn1099-1476en_US
dc.contributor.departmentUniversity of Chester, UK; Guangdong University of Technology, PR. China; Hunan Normal University, P. R. Chinaen_US
dc.identifier.journalMathematical Methods in the Applied Sciencesen_US
or.grant.openaccessYesen_US
rioxxterms.funderunfundeden_US
rioxxterms.identifier.projectunfundeden_US
rioxxterms.versionAMen_US
rioxxterms.versionofrecordhttps://doi.org/10.1002/mma.6258en_US
rioxxterms.licenseref.startdate2021-02-05
rioxxterms.publicationdate2020-02-05
dc.dateAccepted2020-01-20
dc.date.deposited2020-02-26en_US
dc.indentifier.issn1099-1476en_US


Files in this item

Thumbnail
Name:
ADIOSC9.pdf
Size:
309.0Kb
Format:
PDF
Request:
Main article

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/