Modelling transverse matrix cracking and splitting of cross-ply composite laminates under four point bending
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
Name:
Modelling transverse matrix ...
Embargo:
2215-11-05
Size:
959.9Kb
Format:
PDF
Request:
Main article
Affiliation
University of Chester; University of ManchesterPublication Date
2015-11-30
Metadata
Show full item recordAbstract
The transverse matrix cracking and splitting in a cross-ply composite laminate has been modelled using the finite element (FE) method with the commercial code Abaqus/Explicit 6.10. The equivalent constraint model (ECM) developed by Soutis et al. has been used for the theoretical prediction of matrix cracking and results have been compared to those obtained experimentally and numerically. A stress-based traction–separation law has been used to simulate the initiation of matrix cracks and their growth under mixed-mode loading. Cohesive elements have been inserted between the interfaces of every neighbouring element along the fibre orientation for all 0° and 90° plies to predict the matrix cracking and splitting at predetermined crack spacing based on experimental observations. Good agreement is obtained between experimental and numerical crack density profiles for different 90° plies. In addition, different mechanisms of matrix cracking and growth processes were captured and splitting was also simulated in the bottom 0° ply by the numerical model.Citation
Shi, Y. & Soutis, C. (2016). Modelling transverse matrix cracking and splitting of cross-ply composite laminates under four point bending. Theoretical and Applied Fracture Mechanics, 83, 73-81.Publisher
ElsevierType
ArticleLanguage
enISSN
0167-8442ae974a485f413a2113503eed53cd6c53
10.1016/j.tafmec.2015.11.006
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/