• Atomic and vibrational origins of mechanical toughness in bioactive cement during setting

      Tian, Kun V.; Yang, Bin; Yue, Yuan-Zheng; Bowron, Daniel T.; Mayers, Jerry; Donnan, Robert S.; Dobo-Nagy, Csaba; Nicholson, John W.; Greer, A. Lindsay; Chass, Gregory A.; et al. (Nature Publishing Group, 2015-11-09)
      Bioactive glass ionomer cements (GICs) have been in widespread use for ~40 years in dentistry and medicine. However, these composites fall short of the toughness needed for permanent implants. Significant impediment to improvement has been the requisite use of conventional destructive mechanical testing, which is necessarily retrospective. Here we show quantitatively, through the novel use of calorimetry, terahertz (THz) spectroscopy and neutron scattering, how GIC’s developing fracture toughness during setting is related to interfacial THz dynamics, changing atomic cohesion and fluctuating interfacial configurations. Contrary to convention, we find setting is non-monotonic, characterized by abrupt features not previously detected, including a glass–polymer coupling point, an early setting point, where decreasing toughness unexpectedly recovers, followed by stress-induced weakening of interfaces. Subsequently, toughness declines asymptotically to long-term fracture test values. We expect the insight afforded by these in situ non-destructive techniques will assist in raising understanding of the setting mechanisms and associated dynamics of cementitious materials.
    • Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz

      Wu, Bian; Tuncer, Hatice M.; Naeem, Majid; Yang, Bin; Cole, Matthew T.; Milne, William I.; Hao, Yang; Queen Mary University of London (Nature Publishing Group, 2014-02-19)
      The development of transparent radio-frequency electronics has been limited, until recently, by the lack of suitable materials. Naturally thin and transparent graphene may lead to disruptive innovations in such applications. Here, we realize optically transparent broadband absorbers operating in the millimetre wave regime achieved by stacking graphene bearing quartz substrates on a ground plate. Broadband absorption is a result of mutually coupled Fabry-Perot resonators represented by each graphene-quartz substrate. An analytical model has been developed to predict the absorption performance and the angular dependence of the absorber. Using a repeated transfer-and-etch process, multilayer graphene was processed to control its surface resistivity. Millimetre wave reflectometer measurements of the stacked graphene-quartz absorbers demonstrated excellent broadband absorption of 90% with a 28% fractional bandwidth from 125-165 GHz. Our data suggests that the absorbers’ operation can also be extended to microwave and low-terahertz bands with negligible loss in performance.
    • Titanium Dioxide Engineered for Near-dispersionless High Terahertz Permittivity and Ultra-low-loss

      Chuying, Yu; Zeng, Yang; Yang, Bin; Donnan, Robert S.; Huang, Jinbao; Xiong, Zhaoxian; Mahajan, Amit; Shi, Baogui; Ye, Haitao; Binions, Russell; et al. (Nature Publishing Group, 2017-07-26)
      Realising engineering ceramics to serve as substrate materials in high-performance terahertz(THz) that are low-cost, have low dielectric loss and near-dispersionless broadband, high permittivity, is exceedingly demanding. Such substrates are deployed in, for example, integrated circuits for synthesizing and converting nonplanar and 3D structures into planar forms. The Rutile form of titanium dioxide (TiO2) has been widely accepted as commercially economical candidate substrate that meets demands for both low-loss and high permittivities at sub-THz bands. However, the relationship between its mechanisms of dielectric response to the microstructure have never been systematically investigated in order to engineer ultra-low dielectric-loss and high value, dispersionless permittivities. Here we show TiO2 THz dielectrics with high permittivity (ca. 102.30) and ultra-low loss (ca. 0.0042). These were prepared by insight gleaned from a broad use of materials characterisation methods to successfully engineer porosities, second phase, crystallography shear-planes and oxygen vacancies during sintering. The dielectric loss achieved here is not only with negligible dispersion over 0.2 - 0.8 THz, but also has the lowest value measured for known high-permittivity dielectrics. We expect the insight afforded by this study will underpin the development of subwavelength-scale, planar integrated circuits, compact high Q-resonators and broadband, slow-light devices in the THz band.