• Evaluating current practice and proposing a system to enhance knowledge assets within a small software development unit

      Fannoun, Sufian; Kerins, John; The University of Chester (IEEE, 2018-06-25)
      Knowledge management and knowledge transfer within organisations challenge continuity and resilience in the face of changing environments. While issues are principally addressed within large organisations, there is scope to evaluate how knowledge assets are managed within small and medium enterprises and to consider how the process might be enhanced. The research reported here aimed to evaluate practice within an evolving software development unit to understand how knowledge has been acquired and utilised to further organisational development. In-depth interviews were carried out with members of the unit to elicit an understanding of individual and collective learning. Qualitative analysis of the data revealed key changes in thinking and practice as well as insight into the development of individuals' contextual knowledge and tacit understanding. This analysis led to the proposal of a bespoke, lightweight web-based system to support knowledge capture and organisational learning. This work is still in progress but it is anticipated that the results will provide a potentially novel and beneficial method for enhancing knowledge assets in small enterprises and consolidating valuable, and potentially scarce, expertise.
    • Swarm Communication by Evolutionary Algorithms

      Vaughan, Neil; University of Chester (IEEE, 2018-05-27)
      This research has applied evolutionary algorithms to evolve swarm communication. Controllers were evolved for colonies of artificial simulated ants during a food foriaging task which communicate using pheromone. Neuroevolution enables both weights and the topology of the artificial neural networks to be optimized for food foriaging. The developed model results in evolution of ants which communicate using pheromone trails. The ants successfully collect and return food to the nest. The controller has evolved to adjust the strength of pheromone which provides a signal to guide the direction of other ants in the colony by hill climbing strategy. A single ANN controller for ant direction successfully evolved which exhibits many separate skills including food search, pheromone following, food collection and retrieval to the nest.
    • Morphogenetic Engineering For Evolving Ant Colony Pheromone Communication

      Vaughan, Neil; University of Chester (The Society for the Study of Artificial Intelligence and Simulation for Behaviour (AISB), 2018-04-06)
      This research investigates methods for evolving swarm communication in a simulated colony of ants using pheromone when foriaging for food. This research implemented neuroevolution and obtained the capability to learn pheromone communication autonomously. Building on previous literature on pheromone communication, this research applies evolution to adjust the topology and weights of an artificial neural network which controls the ant behaviour. Comparison of performance is made between a hard-coded benchmark algorithm, a fixed topology ANN and neuroevolution of the ANN topology and weights. The resulting neuroevolution produced a neural network which was successfully evolved to achieve the task objective, to collect food and return it to the nest.
    • How effective is Ant Colony Optimisation at Robot Path Planning

      Wolfenden, A.; Vaughan, Neil; University of Chester (The Society for the Study of Artificial Intelligence and Simulation for Behaviour (AISB), 2018-04-06)
      This project involves investigation of the problem robot path planning using ant colony optimisation heuristics to construct the quickest path from the starting point to the end. The project has developed a simulation that successfully simulates as well as demonstrates visually through a graphical user interface, robot path planning using ant colony optimisation. The simulation shows an ability to traverse an unknown environment from a start point to an end and successfully construct a route for others to follow both when the terrain is dynamic and static
    • Associating Colours with Emotions Detected in Social Media Tweets

      Harvey, Robert; Muncey, Andrew; Vaughan, Neil; University of Chester (The Society for the Study of Artificial Intelligence and Simulation for Behaviour (AISB), 2018-04-06)
      This project involves two major areas of work, the detection of emotions in text from Twitter posts (tweets), and the association of that emotion with colour. Emotion mining is the field of natural language processing which is concerned with the detection and classification. It is a subfield of semantic analysis which contains both emotion and opinion mining. Both tasks depend on an emotion model to classify detected emotions and to associate a colour depending on the location of the emotion in the model. This research paper demonstrates preliminary results from classification of tweets to assign emotion labels. Also designs are presented for a prototype web interface for displaying the assigned colour and emotion associated with tweets.
    • Double-diffusive natural convection in a differentially heated wavy cavity under thermophoresis effect

      Grosan, Teodor; Sheremet, Mikhail A.; Pop, Ioan; Pop, Serban R.; Babes-Bolyai University; Tomsk State University; University of Chester (American Institute of Aeronautics and Astronautics, 2018-02-28)
      A numerical analysis is made for thermophoretic transport of small particles through the convection in a differentially heated square cavity with a wavy wall. The governing gas-particle partial differential equations are solved numerically for some values of the considered parameters to investigate their influence on the flow, heat, and mass transfer patterns. It is found that the effect of thermophoresis can be quite significant in appropriate situations. The number of undualtions can essentially modify the heat transfer rate and fluid flow intensity.
    • SLAM-based dense surface reconstruction in monocular Minimally Invasive Surgery and its application to Augmented Reality

      Chen, Long; Tang, Wen; John, Nigel W.; Wan, Tao R.; Zhang, Jian Jun; Bournemouth University; University of Chester; University of Bradford (Elsevier, 2018-02-08)
      Background and Objective While Minimally Invasive Surgery (MIS) offers considerable benefits to patients, it also imposes big challenges on a surgeon's performance due to well-known issues and restrictions associated with the field of view (FOV), hand-eye misalignment and disorientation, as well as the lack of stereoscopic depth perception in monocular endoscopy. Augmented Reality (AR) technology can help to overcome these limitations by augmenting the real scene with annotations, labels, tumour measurements or even a 3D reconstruction of anatomy structures at the target surgical locations. However, previous research attempts of using AR technology in monocular MIS surgical scenes have been mainly focused on the information overlay without addressing correct spatial calibrations, which could lead to incorrect localization of annotations and labels, and inaccurate depth cues and tumour measurements. In this paper, we present a novel intra-operative dense surface reconstruction framework that is capable of providing geometry information from only monocular MIS videos for geometry-aware AR applications such as site measurements and depth cues. We address a number of compelling issues in augmenting a scene for a monocular MIS environment, such as drifting and inaccurate planar mapping. Methods A state-of-the-art Simultaneous Localization And Mapping (SLAM) algorithm used in robotics has been extended to deal with monocular MIS surgical scenes for reliable endoscopic camera tracking and salient point mapping. A robust global 3D surface reconstruction framework has been developed for building a dense surface using only unorganized sparse point clouds extracted from the SLAM. The 3D surface reconstruction framework employs the Moving Least Squares (MLS) smoothing algorithm and the Poisson surface reconstruction framework for real time processing of the point clouds data set. Finally, the 3D geometric information of the surgical scene allows better understanding and accurate placement AR augmentations based on a robust 3D calibration. Results We demonstrate the clinical relevance of our proposed system through two examples: a) measurement of the surface; b) depth cues in monocular endoscopy. The performance and accuracy evaluations of the proposed framework consist of two steps. First, we have created a computer-generated endoscopy simulation video to quantify the accuracy of the camera tracking by comparing the results of the video camera tracking with the recorded ground-truth camera trajectories. The accuracy of the surface reconstruction is assessed by evaluating the Root Mean Square Distance (RMSD) of surface vertices of the reconstructed mesh with that of the ground truth 3D models. An error of 1.24mm for the camera trajectories has been obtained and the RMSD for surface reconstruction is 2.54mm, which compare favourably with previous approaches. Second, in vivo laparoscopic videos are used to examine the quality of accurate AR based annotation and measurement, and the creation of depth cues. These results show the potential promise of our geometry-aware AR technology to be used in MIS surgical scenes. Conclusions The results show that the new framework is robust and accurate in dealing with challenging situations such as the rapid endoscopy camera movements in monocular MIS scenes. Both camera tracking and surface reconstruction based on a sparse point cloud are eff active and operated in real-time. This demonstrates the potential of our algorithm for accurate AR localization and depth augmentation with geometric cues and correct surface measurements in MIS with monocular endoscopes.
    • Quantification of the pressures generated during insertion of an epidural needle in labouring women of varying body mass indices

      Wee, M. Y. K.; Isaacs, R. A.; Vaughan, Neil; Dubey, V. N.; Parker, B.; University of Chester; Bournemouth University; Poole Hospital NHS Trust; West Hertfordshire NHS Trust; Southampton University Hospital (Heighten Science Publications, 2017-12-01)
      Objective: The primary aim of this study was to measure pressure generated on a Tuohy needle during the epidural procedure in labouring women of varying body mass indices (BMI) with a view of utilising the data for the future development of a high fi delity epidural simulator. High-fi delity epidural simulators have a role in improving training and safety but current simulators lack a realistic experience and can be improved. Methods: This study was approved by the National Research Ethics Service Committee South Central, Portsmouth (REC reference 11/SC/0196). After informed consent epidural needle insertion pressure was measured using a Portex 16-gauge Tuohy needle, loss-of-resistance syringe, a three-way tap, pressure transducer and a custom-designed wireless transmitter. This was performed in four groups of labouring women, stratified according to BMI kg/m2: 18-24.9; 25-34.9; 35-44.9 and >=45. One-way ANOVA was used to compare difference in needle insertion pressure between the BMI groups. A paired t-test was performed between BMI group 18-24.9 and the three other BMI groups. Ultrasound images of the lumbar spine were undertaken prior to the epidural procedure and lumbar magnetic resonance imaging (MRI) was performed within 72h post-delivery. These images will be used in the development of a high fi delity epidural simulator. Results: The mean epidural needle insertion pressure of labouring women with BMI 18-24.9 was 461mmHg; BMI 25-34.9 was 430mmHg; BMI 35-44.9 was 415mmHg and BMI >=45 was 376mmHg, (p=0.52). Conclusion: Although statistically insignifi cant, the study did show a decreasing trend of epidural insertion pressure with increasing body mass indices.
    • Recent Developments and Future Challenges in Medical Mixed Reality

      Chen, Long; Day, Thomas W.; Tang, Wen; John, Nigel W.; Bournemouth University and University of Chester (2017-11-23)
      Mixed Reality (MR) is of increasing interest within technology driven modern medicine but is not yet used in everyday practice. This situation is changing rapidly, however, and this paper explores the emergence of MR technology and the importance of its utility within medical applications. A classification of medical MR has been obtained by applying an unbiased text mining method to a database of 1,403 relevant research papers published over the last two decades. The classification results reveal a taxonomy for the development of medical MR research during this period as well as suggesting future trends. We then use the classification to analyse the technology and applications developed in the last five years. Our objective is to aid researchers to focus on the areas where technology advancements in medical MR are most needed, as well as providing medical practitioners with a useful source of reference.
    • Real-time Geometry-Aware Augmented Reality in Minimally Invasive Surgery

      Chen, Long; Tang, Wen; John, Nigel W.; Bournemouth University; University of Chester (IET, 2017-10-27)
      The potential of Augmented Reality (AR) technology to assist minimally invasive surgeries (MIS) lies in its computational performance and accuracy in dealing with challenging MIS scenes. Even with the latest hardware and software technologies, achieving both real-time and accurate augmented information overlay in MIS is still a formidable task. In this paper, we present a novel real-time AR framework for MIS that achieves interactive geometric aware augmented reality in endoscopic surgery with stereo views. Our framework tracks the movement of the endoscopic camera and simultaneously reconstructs a dense geometric mesh of the MIS scene. The movement of the camera is predicted by minimising the re-projection error to achieve a fast tracking performance, while the 3D mesh is incrementally built by a dense zero mean normalised cross correlation stereo matching method to improve the accuracy of the surface reconstruction. Our proposed system does not require any prior template or pre-operative scan and can infer the geometric information intra-operatively in real-time. With the geometric information available, our proposed AR framework is able to interactively add annotations, localisation of tumours and vessels, and measurement labelling with greater precision and accuracy compared with the state of the art approaches.
    • Using Virtual Reality to Experience Different Powered Wheelchair Configurations

      Day, Thomas W.; Headleand, Christopher J.; Pop, Serban R.; John, Nigel W.; Dobson, William; University of Chester, University of Lincoln (2017-09-31)
      This paper presents recent additions to our Wheelchair-VR application, in particular the use of different drive configurations. We have previously shown that Wheelchair-VR can be used to improve driving skills. Here we consider the utility of the application in allowing users who are in the process of purchasing or upgrading a wheelchair to experience different configurations and options in a cost-effective virtual environment. A preliminary study is presented, which suggests that this approach can be effective.
    • Traversing social networks in the virtual dance hall: visualizing history in VR

      Southall, Helen; Beever, Lee; Butcher, Peter; University of Chester (IEEE Conference Publications, 2017-09-20)
      Digital recreations of historical sites and events are important tools both for academic researchers and for public interpretation. Current 3D visualization and VR technologies enable these recreations to be increasingly immersive and engaging. This poster describes a case study based on a mid-twentieth century Chester dance hall, examining the possibilities and limitations of 3D VR for recreating a public music venue which no longer physically exists, and also for visualizing and analyzing the professional network of musicians who played there, and at many other local venues.
    • Wheelchair-MR: A Mixed Reality Wheelchair Training Environment

      Day, Thomas W.; University of Chester (IEEE, 2017-09-20)
      In previous work we have demonstrated that Virtual Reality can be used to help train driving skills for users of a powered wheelchair. However, cybersickness was a particular problem. This work-in-progress paper presents a Mixed Reality alternative to our wheelchair training software, which overcomes this problem. The design and implementation of this application is discussed. Early results shows some promise and overcomes the cybersickness issue. More work is needed before a larger scale study can be undertaken.
    • Learning to combine multiple string similarity metrics for effective toponym matching

      Santos, Rui; Murrieta-Flores, Patricia; Martins, Bruno (Informa UK Limited, 2017-09-06)
    • Building Immersive Data Visualizations for the Web

      Butcher, Peter; Ritsos, Panagiotis D.; University of Chester; Bangor University (IEEE Conference Publications, 2017-09)
      We present our early work on building prototype applications for Immersive Analytics using emerging standards-based web technologies for VR. For our preliminary investigations we visualize 3D bar charts that attempt to resemble recent physical visualizations built in the visualization community. We explore some of the challenges faced by developers in working with emerging VR tools for the web, and in building effective and informative immersive 3D visualizations.
    • Island Coalescence during Film Growth: An Underestimated Limitation of Cu ALD

      Hagen, Dirk J.; Connolly, James; Povey, Ian M.; Rushworth, Simon; Pemble, Martyn E. (Wiley, 2017-05-31)
    • The Implementation and Validation of a Virtual Environment for Training Powered Wheelchair Manoeuvres

      John, Nigel W.; Pop, Serban R.; Day, Thomas W.; Ritsos, Panagiotis D.; Headleand, Christopher J.; University of Chester; Bangor University; University of Lincoln (IEEE, 2017-05-02)
      Navigating a powered wheelchair and avoiding collisions is often a daunting task for new wheelchair users. It takes time and practice to gain the coordination needed to become a competent driver and this can be even more of a challenge for someone with a disability. We present a cost-effective virtual reality (VR) application that takes advantage of consumer level VR hardware. The system can be easily deployed in an assessment centre or for home use, and does not depend on a specialized high-end virtual environment such as a Powerwall or CAVE. This paper reviews previous work that has used virtual environments technology for training tasks, particularly wheelchair simulation. We then describe the implementation of our own system and the first validation study carried out using thirty three able bodied volunteers. The study results indicate that at a significance level of 5% then there is an improvement in driving skills from the use of our VR system. We thus have the potential to develop the competency of a wheelchair user whilst avoiding the risks inherent to training in the real world. However, the occurrence of cybersickness is a particular problem in this application that will need to be addressed.
    • The Use of Stereoscopy in a Neurosurgery Training Virtual Environment

      John, Nigel W.; Phillips, Nicholas I.; ap Cenydd, Llyr; Pop, Serban R.; Coope, David; Kamaly-Asl, Ian; de Souza, Christopher; Watt, Simon J.; University of Chester, Leeds General Infirmary, Bangor University, University of Manchester, Salford Royal NHS Foundation Trust, Cardiff University (MIT Press, 2017-03-15)
      We have previously investigated the effectiveness of a custom built virtual environment in assisting training of a ventriculostomy procedure, which is a commonly performed procedure by a neurosurgeon and a core task for trainee surgeons. The training tool (called VCath) was initially developed as a low fidelity app for a tablet platform to provide easy access and availability to trainees. Subsequently we have developed a high fidelity version of VCath that uses a stereoscopic display to immerse the trainee in the virtual environment. This paper reports on two studies that have been carried out to compare the low and high fidelity versions of VCath, particularly to assess the value of stereoscopy. Study 1 was conducted at the second annual boot camp organized for all year one trainees in neurosurgery in the UK. Study 2 was performed on lay people, with no surgical experience. Our hypothesis was that using stereoscopy in the training task would be beneficial. Results from Study 1 demonstrated that performance improved for both the control group and the group trained with the tablet version of VCath. The group trained on the high fidelity version of VCath with a stereoscopic display showed no performance improvement. The indication is that our hypothesis is false. In Study 2, six different conditions were investigated that covered the use of training with VCath on a tablet, a mono display at two different sizes, a stereo display at two different sizes, and a control group who received no training. Results from this study with lay people show that stereoscopy can make a significant improvement to the accuracy of needle placement. The possible reasons for these results and the apparent contradiction between the two studies are discussed.
    • Comparing and combining time series trajectories using Dynamic Time Warping

      Vaughan, Neil; Gabrys, Bogdan; Bournemouth University (Elsevier, 2016-09-04)
      This research proposes the application of dynamic time warping (DTW) algorithm to analyse multivariate data from virtual reality training simulators, to assess the skill level of trainees. We present results of DTW algorithm applied to trajectory data from a virtual reality haptic training simulator for epidural needle insertion. The proposed application of DTW algorithm serves two purposes, to enable (i) two trajectories to be compared as a similarity measure and also enables (ii) two or more trajectories to be combined together to produce a typical or representative average trajectory using a novel hierarchical DTW process. Our experiments included 100 expert and 100 novice simulator recordings. The data consists of multivariate time series data-streams including multi-dimensional trajectories combined with force and pressure measurements. Our results show that our proposed application of DTW provides a useful time-independent method for (i) comparing two trajectories by providing a similarity measure and (ii) combining two or more trajectories into one, showing higher performance compared to conventional methods such as linear mean. These results demonstrate that DTW can be useful within virtual reality training simulators to provide a component in an automated scoring and assessment feedback system.
    • Stigmergic Interoperability for Autonomic Systems: Managing Complex Interactions in Multi-Manager Scenarios

      Eze, Thaddeus; Anthony, Richard; University of Chester; University of Greenwich (IEEE, 2016-09-01)
      The success of autonomic computing has led to its popular use in many application domains, leading to scenarios where multiple autonomic managers (AMs) coexist, but without adequate support for interoperability. This is evident, for example, in the increasing number of large datacentres with multiple managers which are independently designed. The increase in scale and size coupled with heterogeneity of services and platforms means that more AMs could be integrated to manage the arising complexity. This has led to the need for interoperability between AMs. Interoperability deals with how to manage multi-manager scenarios, to govern complex coexistence of managers and to arbitrate when conflicts arise. This paper presents an architecture-based stigmergic interoperability solution. The solution presented in this paper is based on the Trustworthy Autonomic Architecture (TAArch) and uses stigmergy (the means of indirect communication via the operating environment) to achieve indirect coordination among coexisting agents. Usually, in stigmergy-based coordination, agents may be aware of the existence of other agents. In the approach presented here in, agents (autonomic managers) do not need to be aware of the existence of others. Their design assumes that they are operating in 'isolation' and they simply respond to changes in the environment. Experimental results with a datacentre multi-manager scenario are used to analyse the proposed approach.