• Clinical Cell Therapy Guidelines for Neurorestoration (IANR/CANR 2017)

      Huang, Hongyun; Young, Wise; Chen, Lin; Feng, Shiqing; Zoubi, Ziad M. Al.; Sharma, Hari Shanker; Saberi, Hooshang; Moviglia, Gustavo A.; He, Xijing; Muresanu, Dafin F.; et al. (SAGE Publications, 2018-04-11)
    • Cognitive function and disability in late Life: An ecological validation of the 10/66 battery of cognitive tests among community dwelling older adults in south India

      Krishna, Murali; Beulah, Eunice; Jones, Steven; Sundaracharj, Rajesh; Saroja, A.; Kumaran, Kalyanaraman; Karat, Samuel C.; Prince, Martin; Fall, Caroline H. D.; University of Chester (Wiley, 2015-12-17)
      Key Points • 10/66 cognitive tests are well suited for identification of older adults with cognitive and functional impairment at a population level in LMIC setting. • Lower scores on individual domains of the 10/66 battery of cognitive tests are associated with higher levels of disability and functional impairment. • It is feasible to administer 10/66 cognitive assessments in participant's own homes in India. • 10/66 cognitive tests are education and culture fair, suitable for use in population based research in India.
    • Comment on "PP2A inhibition sensitizes cancer stem cells to ABL tyrosine kinase inhibitors in BCR-ABL human leukemia".

      Perrotti, Danilo; Agarwal, Anupriya; Lucas, Claire; Narla, Goutham; Neviani, Paolo; Odero, Maria D.; Ruvolo, Peter P.; Verrills, Nicole M. (American Association for the Advancement of Science, 2019-07-17)
      LB100 does not sensitize CML stem cells to tyrosine kinase inhibitor–induced apoptosis.
    • Commentary: Endovascular Sealing of Abdominal Aortic Aneurysms: Do Current Data Justify Wider Use?

      Torella, Francesco; McWilliams, Richard G.; Fisher, Robert K. (SAGE Publications, 2018-04-12)
    • Comparison of Mesenchymal Stromal Cells Isolated From Murine Adipose Tissue and Bone Marrow in the Treatment of Spinal Cord Injury

      Takahashi, Ai; Johnson, William Eustace Basil; Uchida, Kenzo; Matsumine, Akihiko; University of Chester, University of Fukui (SAGE, 2018-05-10)
      The use of mesenchymal stromal cell (MSC) transplantation to repair the injured spinal cord has shown consistent benefits in preclinical models. However, the low survival rate of grafted MSC is one of the most important problems. In the injured spinal cord, transplanted cells are exposed to hypoxic conditions and exposed to nutritional deficiency caused by poor vascular supply. Also, the transplanted MSCs face cytotoxic stressors that cause cell death. The aim of this study was to compare adipose-derived MSCs (AD-MSCs) and bone marrow-derived MSCs (BM-MSCs) isolated from individual C57BL6/J mice in relation to: (i) cellular characteristics, (ii) tolerance to hypoxia, oxidative stress and serum-free conditions, and (iii) cellular survival rates after transplantation. AD-MSCs and BM-MSCs exhibited a similar cell surface marker profile, but expressed different levels of growth factors and cytokines. To research their relative stress tolerance, both types of stromal cells were incubated at 20.5% O2 or 1.0% O2 for 7 days. Results showed that AD-MSCs were more proliferative with greater culture viability under these hypoxic conditions than BM-MSCs. The MSCs were also incubated under H2O2-induced oxidative stress and in serum-free culture medium to induce stress. AD-MSCs were better able to tolerate these stress conditions than BMMSCs; similarly when transplanted into the spinal cord injury region in vivo, AD-MSCs demonstrated a higher survival rate post transplantation Furthermore, this increased AD-MSC survival post transplantation was associated with preservation of axons and enhanced vascularization, as delineated by increases in anti-gamma isotype of protein kinase C and CD31 immunoreactivity, compared with the BM-MSC transplanted group. Hence, our results indicate that AD-MSCs are an attractive alternative to BM-MSCs for the treatment of severe spinal cord injury. However, it should be noted that the motor function was equally improved following moderate spinal cord injury in both groups, but with no significant improvement seen unfortunately following severe spinal cord injury in either group
    • A comparison of self-reported and device measured sedentary behaviour in adults: a systematic review and meta-analysis.

      Cardilli, Luca; Reed, Jennifer L; Saunders, Travis J; Kite, Chris; Douilette, K; Fournier, K; Buckley, John P; University of Ottawa
      Abstract BACKGROUND: Sedentary behaviour (SB) is a risk factor for chronic disease and premature mortality. While many individual studies have examined the reliability and validity of various self-report measures for assessing SB, it is not clear, in general, how self-reported SB (e.g., questionnaires, logs, ecological momentary assessments (EMAs)) compares to device measures (e.g., accelerometers, inclinometers). OBJECTIVE: The primary objective of this systematic review was to compare self-report versus device measures of SB in adults. METHODS: Six bibliographic databases were searched to identify all studies which included a comparable self-report and device measure of SB in adults. Risk of bias within and across studies was assessed. Results were synthesized using meta-analyses. RESULTS: The review included 185 unique studies. A total of 123 studies comprising 173 comparisons and data from 55,199 participants were used to examine general criterion validity. The average mean difference was -105.19 minutes/day (95% CI: -127.21, -83.17); self-report underestimated sedentary time by ~1.74 hours/day compared to device measures. Self-reported time spent sedentary at work was ~40 minutes higher than when assessed by devices. Single item measures performed more poorly than multi-item questionnaires, EMAs and logs/diaries. On average, when compared to inclinometers, multi-item questionnaires, EMAs and logs/diaries were not significantly different, but had substantial amount of variability (up to 6 hours/day within individual studies) with approximately half over-reporting and half under-reporting. A total of 54 studies provided an assessment of reliability of a self-report measure, on average the reliability was good (ICC = 0.66). CONCLUSIONS: Evidence from this review suggests that single-item self-report measures generally underestimate sedentary time when compared to device measures. For accuracy, multi-item questionnaires, EMAs and logs/diaries with a shorter recall period should be encouraged above single item questions and longer recall periods if sedentary time is a primary outcome of study. Users should also be aware of the high degree of variability between and within tools. Studies should exert caution when comparing associations between different self-report and device measures with health outcomes. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42019118755. KEYWORDS: Self-report; device; sedentary behaviour; systematic review
    • Comparison of whole body SOD1 knockout with muscle specific SOD1 knockout mice reveals a role for nerve redox signaling in regulation of degenerative pathways in skeletal muscle.

      Nye, Gareth; Sakellariou, Giorgos; McDonagh, Brian; Porter, Helen; Giakoumaki, Ifigeneia; Earl, Kate; Vasilaki, Aphrodite; Brooks, Susan; Richardson, Arlan; Van Remmen, Holly; et al. (Mary Ann Liebert, 2017-12-12)
      Aims: Lack of Cu,Zn-superoxide dismutase (CuZnSOD) in homozygous knockout mice (Sod1−/−) leads to accelerated age-related muscle loss and weakness, but specific deletion of CuZnSOD in skeletal muscle (mSod1KO mice) or neurons (nSod1KO mice) resulted in only mild muscle functional deficits and failed to recapitulate the loss of mass and function observed in Sod1−/− mice. To dissect any underlying cross-talk between motor neurons and skeletal muscle in the degeneration in Sod1−/− mice, we characterized neuromuscular changes in the Sod1−/− model compared with mSod1KO mice and examined degenerative molecular mechanisms and pathways in peripheral nerve and skeletal muscle. Results: In contrast to mSod1KO mice, myofiber atrophy in Sod1−/− mice was associated with increased muscle oxidative damage, neuromuscular junction degeneration, denervation, nerve demyelination, and upregulation of proteins involved in maintenance of myelin sheaths. Proteomic analyses confirmed increased proteasomal activity and adaptive stress responses in muscle of Sod1−/− mice that were absent in mSod1KO mice. Peripheral nerve from neither Sod1−/− nor mSod1KO mice showed increased oxidative damage or molecular responses to increased oxidation compared with wild type mice. Differential cysteine (Cys) labeling revealed a specific redox shift in the catalytic Cys residue of peroxiredoxin 6 (Cys47) in the peripheral nerve from Sod1−/− mice. Innovation and Conclusion: These findings demonstrate that neuromuscular integrity, redox mechanisms, and pathways are differentially altered in nerve and muscle of Sod1−/− and mSod1KO mice. Results support the concept that impaired redox signaling, rather than oxidative damage, in peripheral nerve plays a key role in muscle loss in Sod1−/− mice and potentially sarcopenia during aging. Antioxid. Redox Signal. 28, 275–295. Innovation This is the first study to compare the molecular mechanisms and pathways that occur in both skeletal muscle and peripheral nerve of Sod1−/− and mSod1KO mice in an effort to examine the relative cross-talk and role of pre- and postsynaptic changes in redox homeostasis in loss of neuromuscular integrity and function that occurs with aging. This study highlights that impaired redox signaling in peripheral nerve rather than oxidative damage appears to play a key role in altering the integrity of peripheral nerves and motor neurons and potentially age-associated muscle atrophy and functional deficits. These results are potentially clinically significant and have widespread implications for the understanding of sarcopenia during aging.
    • Comparisons of attempted suicide between India and UK

      Jones, Steven; Keenan, Paul; Krishna, Murali; University of Chester (Mental Health Nursing Association, 2014)
      This paper aims to raise the issues and dilemmas within India by suicide and attempted suicide. In the UK evidence-based interventions have progressed over the past 20 years and changes are having positive benefits on standards of interventions and reducing deaths in some areas by suicide. However, when comparing one culture’s custom and practice with another, deficits of some areas of practice present and this facilitates some interesting insights for investigation. Fundamentally, the aim is not to place one above another but to aid identification for cross-cultural comparisons leading to practice advancements.
    • Conscientious objection and physician-assisted suicide: a viable option in the UK?

      Willis, Derek; George, Rob (2018-11-15)
      Conscience objection is a proposed way of ensuring that medical practitioners who object to physician-assisted suicide may avoid having to be involved in such a procedure if this is legalised. This right on the part of healthcare professionals already exists in certain circumstances. This paper examines the ethical and legal grounds for conscientious objection for medical professionals and shows how it is heavily criticised in circumstances where it is already used. The paper comes to the conclusion that as the grounds and application of conscience objection are no longer as widely accepted, its future application in any legislation can be called into question. [Abstract copyright: © Author(s) (or their employer(s)) 2018. No commercial re-use. See rights and permissions. Published by BMJ.]
    • Conserved sequence-specific lincRNA-steroid receptor interactions drive transcriptional repression and direct cell fate

      Hudson, William H.; Pickard, Mark R.; de Vera, Ian M.; Kuiper, Emily G.; Mourtada-Maarabouni, Mirna; Conn, Graeme L.; Kojetin, Douglas J.; Williams, Gwyn T.; Ortlund, Eric A.; Emory University School of Medicine; Keele University; Scripps Research Institute (Nature Publishing Group, 2014-11-07)
      The majority of the eukaryotic genome is transcribed, generating a significant number of long intergenic noncoding RNAs (lincRNAs). Although lincRNAs represent the most poorly understood product of transcription, recent work has shown lincRNAs fulfill important cellular functions. In addition to low sequence conservation, poor understanding of structural mechanisms driving lincRNA biology hinders systematic prediction of their function. Here we report the molecular requirements for the recognition of steroid receptors (SRs) by the lincRNA growth arrest-specific 5 (Gas5), which regulates steroid-mediated transcriptional regulation, growth arrest and apoptosis. We identify the functional Gas5-SR interface and generate point mutations that ablate the SR-Gas5 lincRNA interaction, altering Gas5-driven apoptosis in cancer cell lines. Further, we find that the Gas5 SR-recognition sequence is conserved among haplorhines, with its evolutionary origin as a splice acceptor site. This study demonstrates that lincRNAs can recognize protein targets in a conserved, sequence-specific manner in order to affect critical cell functions.
    • Decision making for refusals of treatment—a framework to consider

      Jones, Steven; Monteith, Paul; Williams, Barry (Journal of Paramedic Practice, 2014-05-02)
      Challenges to practice are encountered on a daily basis by paramedics that often share many common recurring themes around consent or refusal to treatment. The benefits of training and open debate acknowledge the often complex decisions relating to consent and mental capacity and reduce opportunities for future legal challenge. How the law should be integrated into everyday decision making will be examined and a framework proposed to assist practice for defendable decision making. This article was inspired following joint training undertaken with paramedics and local critical incident managers from the police, which highlighted a need for a practical decision-making framework to be available for application during incidents and for use as an analytical tool to aid post-decision reflection and learning at debrief.
    • The developing landscape of diagnostic and prognostic biomarkers for spinal cord injury in cerebrospinal fluid and blood

      Hulme CH; Brown SJ; Fuller HR; Riddell J; Osman A; Chowdhury J; Kumar N; Johnson WE; Wright KT; Keele University, RJAH Orthopaedic Hospital, University of Glasgow, University of Chester (Nature Publishing Group, 2016-12-20)
      STUDY DESIGN: Review study. OBJECTIVES: The identification of prognostic biomarkers of spinal cord injury (SCI) will help to assign SCI patients to the correct treatment and rehabilitation regimes. Further, the detection of biomarkers that predict permanent neurological outcome would aid in appropriate recruitment of patients into clinical trials. The objective of this review is to evaluate the current state-of-play in this developing field. SETTING: Studies from multiple countries were included. METHODS: We have completed a comprehensive review of studies that have investigated prognostic biomarkers in either the blood or cerebrospinal fluid (CSF) of animals and humans following SCI. RESULTS: Targeted and unbiased approaches have identified several prognostic biomarkers in CSF and blood. These proteins associate with cellular damage following SCI and include components from neurons, oligodendrocytes and reactive astrocytes, that is, neurofilament proteins, glial fibrillary acidic protein, Tau and S100 calcium-binding protein β. Unbiased approaches have also identified microRNAs that are specific to SCI, as well as other cell damage-associated proteins. CONCLUSIONS: The discovery and validation of stable, specific, sensitive and reproducible biomarkers of SCI is a rapidly expanding field of research. So far, few studies have utilised unbiased approaches aimed at the discovery of biomarkers within the CSF or blood in this field; however, some targeted approaches have been successfully used. Several studies using various animal models and some with small human patient cohorts have begun to pinpoint biomarkers in the CSF and blood with putative prognostic value. An increased sample size will be required to validate these biomarkers in the heterogeneous clinical setting.
    • The Development and Growth of Tissues Derived From Cranial Neural Crest and Primitive Mesoderm Is Dependent on the Ligation Status of Retinoic Acid Receptor γ: Evidence That Retinoic Acid Receptor γ Functions to Maintain stem/progenitor Cells in the Absence of Retinoic Acid

      Johnson, William Eustace Basil; Wai, Htoo Aung; Aston University (Mary Ann Liebert, Inc, 2015-02-15)
      Retinoic acid (RA) signaling is important to normal development. However, the function of the different RA receptors (RARs)--RARα, RARβ, and RARγ--is as yet unclear. We have used wild-type and transgenic zebrafish to examine the role of RARγ. Treatment of zebrafish embryos with an RARγ-specific agonist reduced somite formation and axial length, which was associated with a loss of hoxb13a expression and less-clear alterations in hoxc11a or myoD expression. Treatment with the RARγ agonist also disrupted formation of tissues arising from cranial neural crest, including cranial bones and anterior neural ganglia. There was a loss of Sox 9-immunopositive neural crest stem/progenitor cells in the same anterior regions. Pectoral fin outgrowth was blocked by RARγ agonist treatment. However, there was no loss of Tbx-5-immunopositive lateral plate mesodermal stem/progenitor cells and the block was reversed by agonist washout or by cotreatment with an RARγ antagonist. Regeneration of the caudal fin was also blocked by RARγ agonist treatment, which was associated with a loss of canonical Wnt signaling. This regenerative response was restored by agonist washout or cotreatment with the RARγ antagonist. These findings suggest that RARγ plays an essential role in maintaining stem/progenitor cells during embryonic development and tissue regeneration when the receptor is in its nonligated state.
    • Early Transplantation of Mesenchymal Stem Cells After Spinal Cord Injury Relieves Pain Hypersensitivity Through Suppression of Pain-Related Signaling Cascades and Reduced Inflammatory Cell Recruitment

      Johnson, William Eustace Basil; Watanabe, Shuji; Uchida, Kenzo; Nakajima, Hideaki; Matsuo, Hideaki; Sugita, Daisuke; Yoshida, Ai; Honjoh, Kazuya; Baba, Hisatoshi; Aston University, University of Fukui
      Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages.
    • The effects of targeted therapy on cell viability and apoptosis on CML and AML cell lines

      Williams, John; Ireland, Elyse; Marsico, Paolo (University of Chester, 2019-01-15)
      Tyrosine kinase inhibitors (TKIs) are currently the first therapy option for chronic myeloid leukaemia (CML) and acute myeloid leukaemia (AML) patients. However, many patients affected by CML and AML may develop resistance to TKIs or may not recover under this treatment regime. New potential and more effective treatments are recently emerging. Heat shock protein inhibitors (HSPIs) and the proteasome inhibitor Bortezomib are drugs which have been yet to be successfully tested on leukemic patients, despite being successful on other malignancies such as multiple myeloma (MM). The combination between HSPIs and Bortezomib could potentially be successful in killing leukemic cells, by enhancing their respective molecular mechanisms. Indeed, HSPIs would bind to HSP72 avoiding the protein to exert its ligase function to the proteasome, whilst Bortezomib could stop the ubiquitinated proteins to enter the proteasome and ultimately inducing apoptosis. To test the effects of such combination, cell viability was measured via MTS assay, apoptosis levels were tested through Annexin V\PI assays. Involvement of HSP72 and pro-survival protein Bcl-2 were measured via flow-cytometry. The cells were administered with HSPIs and Bortezomib first as single agents for 24 hours, to establish working minimal concentration. Also, the drugs were tested for a shorter time, to understand when the drugs start to be effective. It emerged that one hour is sufficient for the drugs to give an initial effect in terms of cell viability and apoptosis. Following, combination experiments of HSPIs and Bortezomib were performed; the first drug was administered for one hour, the second following one hour and the cells were incubated for 24 hours. This was repeated alternatively for both type of drugs on the different cell lines. MTS and Annexin V\PI showed that there is not a synergistic effect between drugs, but instead there is antagonism. No necrosis was found at any level of the study. The cells were then probed for HSP72 and Bcl-2, to investigate their involvement in apoptosis mechanisms. Following 6 hours of combined and single agent treatment, both type of drugs inhibit HSP72 but failed to reduce the expression of Bcl-2, particularly on AML cells. It is thus proposed that CML and AML cells may die by apoptosis following a short time of treatment with HSPIs and Bortezomib by an extrinsic pathway of apoptosis, independent from Bcl-2 involvement and from mitochondrial pathway of apoptosis. This study may be the first to indicate a potential use of HSPIs and Bortezomib on CML and AML patients for a short time of treatment, although not in combination. Future studies are needed to further investigate the mechanisms of action of these drugs, aiming to potentially give CML and AML patients another successful therapy option to overcome resistance to canonic chemotherapy.
    • Electro Convulsive Therapy: Milestones in its history

      Jones, Colin; Jones, Steven; University of Chester (Mental Health Nurses Association, 2018)
      ECT is a treatment where an electrical current is passed briefly through electrodes applied to the scalp to induce generalised seizure activity. This article explores the origins and developmental milestones of ECT, examines the literature on the history of ECT and concludes with the author’s work experiences.
    • Embedding recovery based approaches into mental health nurse training- a reflective account

      Jones, Steven; Bifarin, Oladayo O.; University of Chester (Mark Allen Healthcare, 2018-11-02)
      Background: Mental health nursing has undoubtedly progressed as a profession but is at a hiatus that is not assisted by government policy and decreased resources. Aims: This reflective account explores some of the considerable expectations placed upon qualified nurses and the real tensions that influence care delivery standards. Methods: Reflecting on experiences gained in clinical settings, underpinned by literature on recovery, some of the expectations placed on qualified nurses in contemporary mental health service delivery are examined. Conclusion: In order to adequately inform the practices and skill set of contemporary mental health nurses, recovery models and clinical staff input should play a central role in nurse education. Education and clinical practice areas should continue to move towards each other and seize every initiative to ensure both are on the same page.
    • Endocytotic potential governs magnetic particle loading in dividing neural cells: studying modes of particle inheritance

      Tickle, Jacqueline A.; Jenkins, Stuart I.; Polyak, Boris; Pickard, Mark R.; Chari, Divya M.; Keele University, United Kingdom; Drexel University College of Medicine, Philadelphia, USA (Future Medicine, 2016-01-10)
      AIM: To achieve high and sustained magnetic particle loading in a proliferative and endocytotically active neural transplant population (astrocytes) through tailored magnetite content in polymeric iron oxide particles. MATERIALS & METHODS: MPs of varying magnetite content were applied to primary-derived rat cortical astrocytes ± static/oscillating magnetic fields to assess labeling efficiency and safety. RESULTS: Higher magnetite content particles display high but safe accumulation in astrocytes, with longer-term label retention versus lower/no magnetite content particles. Magnetic fields enhanced loading extent. Dynamic live cell imaging of dividing labeled astrocytes demonstrated that particle distribution into daughter cells is predominantly 'asymmetric'. CONCLUSION: These findings could inform protocols to achieve efficient MP loading into neural transplant cells, with significant implications for post-transplantation tracking/localization.
    • The experience of stigma in inflammatory bowel disease: an interpretive (hermeneutic) phenomenological study

      Dibley, Lesley; Norton, Christine; Whitehead, Elizabeth; University of Chester (John Wiley & Sons Ltd, 2017-11-03)
      Aim to explore experiences of stigma in people with inflammatory bowel disease. Background Diarrhoea, urgency and incontinence are common symptoms in inflammatory bowel disease. Social rules stipulate full control of bodily functions in adulthood: poor control may lead to stigmatisation, affecting patients’ adjustment to disease. Disease-related stigma is associated with poorer clinical outcomes but qualitative evidence is minimal. Design An interpretive (hermeneutic) phenomenological study of the lived experience of stigma in inflammatory bowel disease. Methods Forty community-dwelling adults with a self-reported diagnosis of inflammatory bowel disease were recruited purposively. Participants reported feeling stigmatised or not and experiencing faecal incontinence or not. Unstructured interviews took place in participants’ homes in the United Kingdom (September 2012 – May 2013). Data were analysed using Diekelmann's interpretive method. Findings Three constitutive patterns - Being in and out of control, Relationships and social Support and Mastery and mediation - reveal the experience of disease-related stigma, occurring regardless of continence status and because of name and type of disease. Stigma recedes when mastery over disease is achieved through development of resilience - influenced by humour, perspective, mental wellbeing and upbringing (childhood socialisation about bodily functions). People travel in and out of stigma, dependent on social relationships with others including clinicians and tend to feel less stigmatised over time. Conclusion Emotional control, social support and mastery over disease are key to stigma reduction. By identifying less resilient patients, clinicians can offer appropriate support, accelerating the patient's path towards disease acceptance and stigma reduction.
    • GAS5 lncRNA Modulates the Action of mTOR Inhibitors in Prostate Cancer Cells

      Yacqub-Usman, Kiren; Pickard, Mark R.; Williams, Gwyn T.; Keele University, United Kingdom (NCRI Cancer Conference 2014 Abstracts, 2014)
      Background There is a need to develop new therapies for castrate-resistant prostate cancer (CRPC) and growth arrest-specific 5 (GAS5) long non-coding RNA (lncRNA), which riborepresses androgen receptor action, may offer novel opportunities in this regard. GAS5 lncRNA expression declines as prostate cancer cells acquire castrate-resistance, and decreased GAS5 expression attenuates the responses of prostate cancer cells to apoptotic stimuli. Enhancing GAS5 lncRNA expression may therefore offer a strategy to improve the effectiveness of chemotherapeutic agents. GAS5 is a member of the 5' terminal oligopyrimidine gene family, and we have therefore examined if mTOR inhibition can enhance cellular GAS5 levels in prostate cancer cells. In addition, we have determined if GAS5 lncRNA itself is required for mTOR inhibitor action in prostate cancer cells, as recently demonstrated in lymphoid cells. Method The effects of mTOR inhibitors on GAS5 lncRNA expression and cell proliferation were determined in a range of prostate cancer cell lines. Transfection of cells with GAS5 siRNA and plasmid constructs was performed to determine the involvement of GAS5 lncRNA in mTOR inhibitor action. Results Treatment with rapamycin and rapalogues increased cellular GAS5 levels and inhibited culture growth in both androgen-dependent (LNCaP) and androgen-sensitive (22Rv1) cell lines, but not in androgen-independent (PC-3 and DU145) cells. GAS5 silencing in both LNCaP and 22Rv1 cells decreased their sensitivity to growth inhibition by mTOR inhibitors. Moreover, transfection of GAS5 lncRNA sensitized PC-3 and DU145 cells to mTOR inhibitors, resulting in inhibition of culture growth. Conclusion mTOR inhibition enhances GAS5 transcript levels in some, but not all, prostate cancer cell lines. This may in part be related to endogenous levels of GAS5 expression, which tend to be lower in prostate cancer cells representative of advanced disease, particularly since current findings demonstrate a role for GAS5 lncRNA in mTOR inhibitor action in prostate cancer cells.