• Heart rate and perceived muscle pain responses to a functional walking test in McArdle disease

      Buckley, John P.; Quinlivan, Ros M.; Sim, Julius; Short, Deborah S.; Eston, Roger (Routledge, 2014-04-14)
      The aim of this study was to assess a 12-min self-paced walking test in patients with McArdle disease. Twenty patients (44.7 ±11 years; 11 female) performed the walking test where walking speed, distance walked, heart rate (HR) and perceived muscle pain (Borg CR10 scale) were measured. Median (interquartile range) distance walked was 890 m (470–935). From 1 to 6 min, median walking speed decreased (from 75.0 to 71.4 m∙min–1) while muscle pain and %HR reserve increased (from 0.3 to 3.0 and 37% to 48%, respectively). From 7 to 12 min, walking speed increased to 74.2 m∙min–1, muscle pain decreased to 1.6 and %HR reserve remained between 45% and 48%. To make relative comparisons, HR and muscle pain were divided by walking speed and expressed as ratios. These ratios rose significantly between 1 and 6 min (HR:walking speed P = .001 and pain:walking speed P < .001) and similarly decreased between 6 and 11 min (P = .002 and P = .001, respectively). Peak ratios of HR:walking speed and pain:walking speed were inversely correlated to distance walked: rs (HR) = −.82 (P < .0001) and rs (pain) = −.55 (P = .012). Largest peak ratios were found in patients who walked < 650 m. A 12-min walking test can be used to assess exercise capacity and detect the second wind in McArdle disease.
    • Heat shock proteins: Interactions with bone and immune cells

      Williams, John H. H.; Davies, Emma L. (University of Liverpool (Chester College of Higher Education), 2004-09)
      Heat shock proteins (Hsps) are increasingly being seen as having roles other than those of intracellular molecular chaperones, particularly with regard to their potential to act as cytokines, and to stimulate the innate immune system. Hsps have also been found to promote bone resorption and osteoclast formation in vitro, although the mechanism has not been previously identified. The overall aims of this thesis were to determine whether Hsps could stimulate bone resorption by affecting the RANKL/OPG pathway, and to address the hypothesis that Hsps can act as a danger signal to the innate immune system. In order for Hsps to affect either the RANKL/OPG system of bone resorption or act as danger signals they would need to be actively released from cells, ideally in a controlled manner following exposure to the source of stress. Hsp60 and Hsp70 were found to be released from a range of immune cells including the cell lines Jurkat and U937, and also PBMCs, T-cells and B-cells. This release was not due to cell damage. The release of Hsp60 and Hsp70 were downregulated by inhibitors of protein secretion, in particular Hsp70 release was reduced by compounds that inhibited lysosomal pathways and Hsp60 release by classical secretion inhibitors. Hsp60, Hsp70, GroEL and LPS all affected the RANKL/OPG system of bone regulation; OPG production and release was down-regulated in the MG63 and GCT osteoblast-like cell lines following treatment with Hsp60, Hsp70 and LPS, and RANKL expression was upregulated following treatment with Hsp60, Hsp70, GroEL and LPS. This effect on the RANKL/OPG system was found to translate into an effect on osteoclast formation when conditioned media from treated osteoblasts was added to osteoclast precursors in the presence of M-CSF. A range of different factors that affected Hsp release were identified; PHA activation of PBMCs was found to upregulate Hsp60 release from PBMCs. GroEL and LPS caused an upregulation in Hsp70 release from PBMCs and GCT osteoblast like cells, and Hsp70 was found to stimulate Hsp60 release from PBMCs and GCT cells. These responses of Hsp release were used to form a theory of a cascade-like danger signal that may occur when cells are exposed to bacterial infection and which would result in activation of antigen presenting cells via previously identified receptors for Hsps such as CD14/TLR4 or by unidentified pathways. The elevated release of Hsps in response to GroEL and LPS was also identified as a mechanism that could stimulate bone loss during infection or autoimmuniry by affecting the RANKL/OPG system. hi conclusion, Hsp60 and Hsp70 can be released from immune cells under normal conditions, and from both immune and osteoblast-like cells following stimulation with LPS and other Hsps. The observed release responses provide a mechanism through which Hsps can act as danger signals to the innate immune system, and also as promoters of bone resorption via the RANKL/OPG system.
    • High CIP2A levels correlate with an antiapoptotic phenotype that can be overcome by targeting BCL-XL in chronic myeloid leukemia. Leukemia

      Lucas, Claire; Milani, Mateus; Butterworth, Michael; Carmell, Natasha; Scott, Laura; Clark, Richard; Cohen, Gerald; Varadarajan, Shankar; University of Liverpool (Nature, 2016-02-29)
      Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a predictive biomarker of disease progression in many malignancies, including imatinib-treated chronic myeloid leukemia (CML). Although high CIP2A levels correlate with disease progression in CML, the underlying molecular mechanisms remain elusive. In a screen of diagnostic chronic phase samples from patients with high and low CIP2A protein levels, high CIP2A levels correlate with an antiapoptotic phenotype, characterized by downregulation of proapoptotic BCL-2 family members, including BIM, PUMA and HRK, and upregulation of the antiapoptotic protein BCL-XL. These results suggest that the poor prognosis of patients with high CIP2A levels is due to an antiapoptotic phenotype. Disrupting this antiapoptotic phenotype by inhibition of BCL-XL via RNA interference or A-1331852, a novel, potent and BCL-XL-selective inhibitor, resulted in extensive apoptosis either alone or in combination with imatinib, dasatinib or nilotinib, both in cell lines and in primary CD34(+) cells from patients with high levels of CIP2A. These results demonstrate that BCL-XL is the major antiapoptotic survival protein and may be a novel therapeutic target in CML.
    • High drug related mortality rates following prison release: Assessing the acceptance likelihood of a naltrexone injection and related concerns

      Murphy, Philip N.; Mohammed, Faizal; Wareing, Michelle; Cotton, Angela; McNeil, John; Irving, Paula; Jones, Steven; Sharples, Louisa; Monk, Rebecca; Elton, Peter; et al. (Elsevier, 2018-07-04)
      Background and aims. High drug related mortality amongst former prisoners in the 4 weeks following release is an internationally recognised problem. Naltrexone injections at release could diminish this by blockading opioid receptors, but naltrexone is not licenced for injection for treating opiate misuse in the United Kingdom and some other countries. This study examined the likelihood of accepting a naltrexone injection at release, and the relationship of this likelihood to other relevant variables. Method. Sixty-one male prisoners with a history of heroin use, who were approaching release from two prisons in the north-west of England, provided likelihood ratings for accepting a naltrexone injection if it were to have been available. Additional data was gathered regarding demographic and drug use histories, and also from psychometric instruments relevant to drug misuse and treatment preparedness. Results. Maximum likelihood ratings for accepting a naltrexone injection were recorded by 55.7% of the sample with only 9.8% indicating no likelihood of accepting an injection. Likelihood ratings were positively related to serving a current sentence for an acquisitive offence compared to drug related or violence offences, and negatively related to peak methadone dosages during the current sentence. Conclusions. Although naltrexone injections were not available to participants in this study, the findings suggest that the potential uptake for this intervention is sufficient to warrant a clinical trial with this population of British prisoners, with a view to potential changes to its current licencing status
    • The Hormone Response Element Mimic Sequence of GAS5 LncRNA is Sufficient to Induce Apoptosis in Breast Cancer Cell Lines

      Pickard, Mark R.; Williams, Gwyn T.; Keele University, United Kingdom (2015)
      Growth arrest-specific 5 (GAS5) encodes snoRNAs and lncRNA. The latter promotes apoptosis, but its expression is down-regulated in breast cancer. The mTOR and nonsense-mediated decay pathways together regulate GAS5 transcript levels but rapalogues fail to enhance GAS5 levels in triple-negative breast cancer cells, so that mTOR inhibitor-independent induction of GAS5 may be more productive in enhancing apoptotic responses to therapies in breast cancer. Notably, GAS5 lncRNA acts by riborepression of glucocorticoid/related receptors; a stem-loop sequence constitutes the GAS5 hormone response element mimic (HREM). The aim of this study was to determine if the GAS5 HREM sequence alone is sufficient to promote the apoptosis of breast cancer cells. Cells were nucleofected with a DNA oligonucleotide corresponding to the GAS5 lncRNA HREM; controls received oligonucleotides either with scrambled GAS5 sequence or with stem complementarity present but lacking the GAS5 HRE consensus. Cells were irradiated with ultraviolet-C (UV-C) light at 20 h post-transfection to induce apoptosis. The basal apoptotic rate almost doubled in MCF7 and MDA-MB-231 cells transfected with the HREM oligonucleotide compared with controls. This effect was apparent at 20 h post¬-transfection, and a corresponding decrease was observed in culture viability; clonogenic activity was also impaired. The HREM sequence also enhanced UV-C-induced apoptosis in an additive manner in both cell lines. Endogenous GAS5 lncRNA expression was unaffected by transfection of the HREM sequence. Thus the GAS5 lncRNA HREM is sufficient to induce apoptosis in breast cancer cells, including TNBC cells and this may serve as the basis for the development of novel oligonucleotide cancer therapies. Funded by the Breast Cancer Campaign.
    • The hormone response element mimic sequence of GAS5 lncRNA is sufficient to induce apoptosis in breast cancer cell lines – towards oligonucleotide therapies?

      Pickard, Mark R.; Williams, Gwyn T.; Keele University, United Kingdom (NCRI Cancer Conference 2014 Abstracts, 2014)
      Background Growth arrest-specific 5 (GAS5), a non-protein coding gene, encodes snoRNAs and lncRNA; transcript levels are controlled by the mTOR and nonsense-mediated decay pathways. GAS5 lncRNA promotes the apoptosis of breast cells, including triple-negative breast cancer (TNBC) cells, but its expression is down-regulated in breast cancer. Rapalogues enhance GAS5 levels in oestrogen receptor-positive breast cancer cells but not in TNBC cells, so that mTOR inhibitor-independent induction of GAS5 may be more productive in enhancing apoptotic responses to therapies. Notably, GAS5 lncRNA acts by riborepression of glucocorticoid/related receptors; a stem-loop sequence constitutes the GAS5 hormone response element mimic (HREM). The aim of this study was to determine if the GAS5 HREM sequence alone is sufficient to promote the apoptosis of breast cancer cells. Method Cells were nucleofected with a DNA oligonucleotide corresponding to the GAS5 lncRNA HREM; controls received oligonucleotides either with scrambled GAS5 sequence or retaining stem-loop structure but lacking the GAS5 HRE consensus; mock-transfected cells were also studied. Cells were irradiated with ultraviolet-C (UV-C) light at 20 h post-transfection to induce apoptosis. Culture viability and apoptosis were assessed and cellular GAS5 levels were determined by RT-qPCR. Results The basal apoptotic rate almost doubled in MCF7 and MDA-MB-231 cells transfected with the HREM oligonucleotide compared with controls. This effect was apparent at 20 h post­-transfection, and a corresponding decrease was observed in culture viability. The HREM sequence also enhanced UV-C-induced apoptosis in an additive manner in both cell lines. Endogenous GAS5 lncRNA expression was unaffected by transfection of the HREM sequence. Conclusion The GAS5 lncRNA HREM is sufficient to induce apoptosis in breast cancer cells, including TNBC cells. This study serves as an exemplar of how emerging knowledge of biologically important lncRNAs may be exploited towards the development of novel oncotherapeutic agents.
    • The hormone response element mimic sequence of GAS5 lncRNA is sufficient to induce apoptosis in breast cancer cells.

      Pickard, Mark R.; Williams, Gwyn T.; Keele University (Impact Journals, 2016-02-03)
      Growth arrest-specific 5 (GAS5) lncRNA promotes apoptosis, and its expression is down-regulated in breast cancer. GAS5 lncRNA is a decoy of glucocorticoid/related receptors; a stem-loop sequence constitutes the GAS5 hormone response element mimic (HREM), which is essential for the regulation of breast cancer cell apoptosis. This preclinical study aimed to determine if the GAS5 HREM sequence alone promotes the apoptosis of breast cancer cells. Nucleofection of hormone-sensitive and -insensitive breast cancer cell lines with a GAS5 HREM DNA oligonucleotide increased both basal and ultraviolet-C-induced apoptosis, and decreased culture viability and clonogenic growth, similar to GAS5 lncRNA. The HREM oligonucleotide demonstrated similar sequence specificity to the native HREM for its functional activity and had no effect on endogenous GAS5 lncRNA levels. Certain chemically modified HREM oligonucleotides, notably DNA and RNA phosphorothioates, retained pro-apoptotic. activity. Crucially the HREM oligonucleotide could overcome apoptosis resistance secondary to deficient endogenous GAS5 lncRNA levels. Thus, the GAS5 lncRNA HREM sequence alone is sufficient to induce apoptosis in breast cancer cells, including triple-negative breast cancer cells. These findings further suggest that emerging knowledge of structure/function relationships in the field of lncRNA biology can be exploited for the development of entirely novel, oligonucleotide mimic-based, cancer therapies.
    • HSPC1 inhibitors and their use in Chronic Lymphocytic Leukaemia

      Smith, Carly M. (University of Chester, 2015-08)
      HSPC1 (Hsp90), a member of the anti-apoptotic Heat Shock Protein (HSP) family appears to play a pivotal role in the development and maintenance of several tumour cell characteristics and as a result has become a target for novel anti-cancer therapies. HSPC1 inhibitors have been tested in clinical trials on a wide variety of cancer types with moderate success. However, despite recent advantages in HSPC1 inhibitor development, the effects of these drugs are not consistent. A number of factors may play a role in determining cell sensitivity to these inhibitors. As Chronic Lymphocytic Leukaemia (CLL) is such a heterogeneous disease with great variation in baseline HSP levels and other proteins amongst the patient cohort, it would not be unreasonable to assume that HSPC1 inhibitors may have varying success as a treatment strategy for this disease. The present study examined the effects of four HSPC1 inhibitors on primary CLL cells, as well as cells from healthy control subjects, and analysed a number of HSPC1 client proteins to assess the efficacy of these inhibitors. Great variation in cellular response to these drugs was observed in both CLL and healthy control subjects. Analysis of HSPC1 client proteins in these cells including ZAP-70, Akt, NF-kB and HSPA1A, revealed that HSPC1 inhibitors do not effect client protein levels in all samples. The results suggest that these inhibitors should not be considered as a universal treatment strategy for CLL and provide a basis for further study into elucidating the mechanisms behind HSPC1 inhibitor resistance. The final aim of this work was to investigate the role of the microenvironment in CLL progression, where a co-culture system was used as an in-vitro tool. Whilst consistent data was obtained using cell lines, and showed that microenvironmental factors promoted resistance to HSPC1 inhibitors, use of primary CLL cells in this model produced inconsistent data, again highlighting the heterogeneity of the disease.
    • Human adipose tissue-derived mesenchymal stem/stromal cells adhere to and inhibit the growth of Staphylococcus aureus and Pseudomonas aeruginosa.

      Wood, Chelsea R.; Al Dhahri, Douaa; Pickles, Neil; Sammons, Rachel L.; Worthington, Tony; Wright, Karina T.; Johnson, William Eustace Basil; Al-Delfi, Ibtesam R. T. (2018-10-23)
      We have cultured and phenotyped human adipose tissue-derived mesenchymal stem/stromal cells (AT MSCs) and inoculated these cultures with bacteria common to infected skin wounds, i.e. Staphylococcus aureus and Pseudomonas aeruginosa. Cell interactions were examined by scanning electron microscopy (SEM), whilst bacterial growth was measured by colony forming unit (c.f.u.) and biofilm assays. AT MSCs appeared to attach to the bacteria and to engulf S. aureus. Significantly fewer bacterial c.f.u. were present in AT MSC : bacterial co-cultures compared with bacteria cultured alone. Antibacterial activity, including an inhibition of P. aeruginosa biofilm formation, was observed when bacteria were treated with conditioned medium harvested from the AT MSC :  bacterial co-cultures, irrespective of the bacterial species to which the AT MSCs had been exposed to previously. Hence, we have demonstrated that AT MSCs inhibit the growth of two common bacterial species. This was associated with bacterial adhesion, potential engulfment or phagocytosis, and the secretion of antibacterial factors.
    • Human placental oxygenation in late gestation: experimental and theoretical approaches

      Nye, Gareth; Ingram, Emma; Jenson, Oliver; Johnstone, Edward; Schneider, Henning; Lewis, Rohan; Chernyavsky, Igor; Brownbill, Paul; University of Manchester, University of Southampton, University of Bern (Wiley, 2018-01-26)
      The placenta is crucial for life. It is an ephemeral but complex organ acting as the barrier interface between maternal and fetal circulations, providing exchange of gases, nutrients, hormones, waste products and immunoglobulins. Many gaps exist in our understanding of the detailed placental structure and function, particularly in relation to oxygen handling and transfer in healthy and pathological states in utero. Measurements to understand oxygen transfer in vivo in the human are limited, with no general agreement on the most appropriate methods. An invasive method for measuring partial pressure of oxygen in the intervillous space through needle electrode insertion at the time of Caesarean sections has been reported. This allows for direct measurements in vivo whilst maintaining near normal placental conditions; however, there are practical and ethical implications in using this method for determination of placental oxygenation. Furthermore, oxygen levels are likely to be highly heterogeneous within the placenta. Emerging non-invasive techniques, such as MRI, and ex vivo research are capable of enhancing and improving current imaging methodology for placental villous structure and increase the precision of oxygen measurement within placental compartments. These techniques, in combination with mathematical modelling, have stimulated novel cross-disciplinary approaches that could advance our understanding of placental oxygenation and its metabolism in normal and pathological pregnancies, improving clinical treatment options and ultimately outcomes for the patient.
    • Identifying the cellular targets of drug action in the central nervous system following corticosteroid therapy

      Jenkins, Stuart I.; Pickard, Mark R.; Khong, Melinda; Smith, Heather L.; Mann, Carl L. A.; Emes, Richard D.; Chari, Divya M.; Keele University, University of Nottingham, University Hospital of North Staffordshire NHS Trust, United Kingdom (American Chemical Society, 2014-01-15)
      Corticosteroid (CS) therapy is used widely in the treatment of a range of pathologies, but can delay production of myelin, the insulating sheath around central nervous system nerve fibers. The cellular targets of CS action are not fully understood, that is, "direct" action on cells involved in myelin genesis [oligodendrocytes and their progenitors the oligodendrocyte precursor cells (OPCs)] versus "indirect" action on other neural cells. We evaluated the effects of the widely used CS dexamethasone (DEX) on purified OPCs and oligodendrocytes, employing complementary histological and transcriptional analyses. Histological assessments showed no DEX effects on OPC proliferation or oligodendrocyte genesis/maturation (key processes underpinning myelin genesis). Immunostaining and RT-PCR analyses show that both cell types express glucocorticoid receptor (GR; the target for DEX action), ruling out receptor expression as a causal factor in the lack of DEX-responsiveness. GRs function as ligand-activated transcription factors, so we simultaneously analyzed DEX-induced transcriptional responses using microarray analyses; these substantiated the histological findings, with limited gene expression changes in DEX-treated OPCs and oligodendrocytes. With identical treatment, microglial cells showed profound and global changes post-DEX addition; an unexpected finding was the identification of the transcription factor Olig1, a master regulator of myelination, as a DEX responsive gene in microglia. Our data indicate that CS-induced myelination delays are unlikely to be due to direct drug action on OPCs or oligodendrocytes, and may occur secondary to alterations in other neural cells, such as the immune component. To the best of our knowledge, this is the first comparative molecular and cellular analysis of CS effects in glial cells, to investigate the targets of this major class of anti-inflammatory drugs as a basis for myelination deficits.
    • The importance of clinician, patient and researcher collaborations in Alport syndrome

      Rheault, Michelle N.; Savige, Judith; Randles, Michael J.; Weinstock, André; Stepney, Melissa; Turner, Neil; Parziale, Gina; Gross, Oliver; Flinter, Frances A; Miner, Jeffrey H; et al. (Springer Nature, 2019-05-01)
      Alport syndrome (AS) is caused by mutations in the genes COL4A3, COL4A4 or COL4A5 and is characterised by progressive glomerular disease, sensorineural hearing loss and ocular defects. Occurring in less than 1:5000, AS is rare genetic disorder but still accounts for >1% of the prevalent population receiving renal replacement therapy. There is also increasing awareness about the risk of chronic kidney disease in individuals with heterozygous mutations in AS genes. The mainstay of current therapy is the use of angiotensin converting enzyme inhibitors and angiotensin receptor blockers, yet potential new therapies are now entering clinical trials. The 2017 International Workshop on Alport Syndrome in Glasgow was a preconference workshop ahead of the 50th anniversary meeting of the European Society for Pediatric Nephrology. It focussed on updates in clinical practice, genetics, basic science and also incorporated patient perspectives. More than 80 international experts including clinicians, geneticists, researchers from academia and industry, and patient representatives took part in panel discussions and breakout groups. This report summarises the workshop proceedings and the relevant contemporary literature. It highlights the unique clinician, patient and researcher collaborations achieved by regular engagement between the groups.
    • An In Vitro Comparison of the Incorporation, Growth, and Chondrogenic Potential of Human Bone Marrow versus Adipose Tissue Mesenchymal Stem Cells in Clinically Relevant Cell Scaffolds Used for Cartilage Repair

      Kohli, Nupur; Johnson, William Eustace Basil; Wright, Karina T.; Sammons, Rachel L.; Jeys, Lee; Snow, Martyn
      Aim: To compare the incorporation, growth, and chondrogenic potential of bone marrow (BM) and adipose tissue (AT) mesenchymal stem cells (MSCs) in scaffolds used for cartilage repair. Methods: Human BM and AT MSCs were isolated, culture expanded, and characterised using standard protocols, then seeded into 2 different scaffolds, Chondro-Gide or Alpha Chondro Shield. Cell adhesion, incorporation, and viable cell growth were assessed microscopically and following calcein AM/ethidium homodimer (Live/Dead) staining. Cell-seeded scaffolds were treated with chondrogenic inducers for 28 days. Extracellular matrix deposition and soluble glycosaminoglycan (GAG) release into the culture medium was measured at day 28 by histology/immunohistochemistry and dimethylmethylene blue assay, respectively. Results: A greater number of viable MSCs from either source adhered and incorporated into Chondro-Gide than into Alpha Chondro Shield. In both cell scaffolds, this incorporation represented less than 2% of the cells that were seeded. There was a marked proliferation of BM MSCs, but not AT MSCs, in Chondro-Gide. MSCs from both sources underwent chondrogenic differentiation following induction. However, cartilaginous extracellular matrix deposition was most marked in Chondro-Gide seeded with BM MSCs. Soluble GAG secretion increased in chondrogenic versus control conditions. There was no marked difference in GAG secretion by MSCs from either cell source. Conclusion: Chondro-Gide and Alpha Chondro Shield were permissive to the incorporation and chondrogenic differentiation of human BM and AT MSCs. Chondro-Gide seeded with BM MSCs demonstrated the greatest increase in MSC number and deposition of a cartilaginous tissue.
    • An in vitro spinal cord injury model to screen neuroregenerative materials

      Weightman, Alan P.; Pickard, Mark R.; Yang, Ying; Chari, Divya M.; Keele University (Elsevier, 2014-01-29)
      Implantable 'structural bridges' based on nanofabricated polymer scaffolds have great promise to aid spinal cord regeneration. Their development (optimal formulations, surface functionalizations, safety, topographical influences and degradation profiles) is heavily reliant on live animal injury models. These have several disadvantages including invasive surgical procedures, ethical issues, high animal usage, technical complexity and expense. In vitro 3-D organotypic slice arrays could offer a solution to overcome these challenges, but their utility for nanomaterials testing is undetermined. We have developed an in vitro model of spinal cord injury that replicates stereotypical cellular responses to neurological injury in vivo, viz. reactive gliosis, microglial infiltration and limited nerve fibre outgrowth. We describe a facile method to safely incorporate aligned, poly-lactic acid nanofibre meshes (±poly-lysine + laminin coating) within injury sites using a lightweight construct. Patterns of nanotopography induced outgrowth/alignment of astrocytes and neurons in the in vitro model were strikingly similar to that induced by comparable materials in related studies in vivo. This highlights the value of our model in providing biologically-relevant readouts of the regeneration-promoting capacity of synthetic bridges within the complex environment of spinal cord lesions. Our approach can serve as a prototype to develop versatile bio-screening systems to identify materials/combinatorial strategies for regenerative medicine, whilst reducing live animal experimentation.
    • Influence of Amplitude of Oscillating Magnetic Fields on Magnetic Nanoparticle-Mediated Gene Transfer to Astrocytes

      Tickle, Jacqueline A.; Jenkins, Stuart I.; Pickard, Mark R.; Chari, Divya M.; Keele University, United Kingdom (World Scientific, 2014-08-07)
      Functionalized magnetic nanoparticles (MNPs) are emerging as a major nanoplatform for regenerative neurology, particularly as transfection agents for gene delivery. Magnetic assistive technology, particularly the recent innovation of applied oscillating magnetic fields, can significantly enhance MNP-mediated gene transfer to neural cells. While transfection efficiency varies with oscillation frequency in various neural cell types, the influence of oscillation amplitude has not yet been investigated. We have addressed this issue using cortical astrocytes that were transfected using MNPs functionalized with plasmid encoding a reporter protein. Cells were exposed to a range of oscillation amplitudes (100–1000 μm), using a fixed oscillation frequency of 1 Hz. No significant differences were found in the proportions of transfected cells at the amplitudes tested, but GFP-related optical density measurements (indicative of reporter protein expression) were significantly enhanced at 200 μm. Safety data show no amplitude-dependent toxicity. Our data suggest that the amplitude of oscillating magnetic fields influences MNP-mediated transfection, and a tailored combination of amplitude and frequency may further enhance transgene expression. Systematic testing of these parameters in different neural subtypes will enable the development of a database of neuro-magnetofection protocols — an area of nanotechnology research where little information currently exists.
    • The influence of CLA on obesity, lung function, adipokines and inflammation

      Williams, John; Ireland, Elsye; Hamdallah, Hanady (University of ChesterUniversity of Chester, 2019-01-31)
      Obesity is currently widespread in the world; the epidemic and pathogenesis of the disease negatively affect several body systems including cardiovascular, endocrine and respiratory systems. Obesity influences the respiratory functions and this effect could be challenging for women, because the air way and lungs are smaller in women compared to men, as well as obesity itself exerts a negative mechanical effect on the women’s airway. Since inflammation was proposed asthe main link between obesity and lung functions, a natural supplement like conjugated linoleic acid (CLA), which has been proposed as an antiinflammatory and anti-obesity food component, could be a potential supplement that can improve the lung functions in obese women. Therefore, the aim of this thesis is to explore the effect of CLA on obesity, lung function, adipokines and inflammation. Additionally, the effect of CLA on inflammation in the current thesis was explored using novel inflammatory markers, such as adhesion molecules (CD11b and CD62L) and heat shock proteins (HSPA1A and HSPB1). Investigating the evidence about the effect of CLA supplementation on obesity in women was conducted via a systematic review with meta-analysis. The meta- analysis searched randomised control trials (RCTs) supplemented CLA mixture in form of oral capsules for less than 6 months. Two search strategies were applied, and eight eligible trials were included with 330 women. CLA significantly reduced body weight (BW; 1.2±0.26 kg, p<0.001), body mass index (BMI; 0.6 ±0.13 kg/ m², p <0.001) and total body fat (TBF; 0.76± 0.26 kg, p=0.003) when it was supplemented for short durations (6- 16 weeks). Moreover, subgroups meta-analyses were conducted which were based on obesity level, menopausal age and life style of the participants. This meta-analysis suggested a mild anti-obesity effect of CLA. However, it was not clear whether the anti-obesity effect is enough to modulate obesity-induced inflammation and lung functions. Therefore, initially a crosssectional trial was conducted to assess the direct associations between the circulating level of CLA and obesity markers, lung functions and inflammations. To the best of Knowledge, this was the first cross-sectional trial that explored these direct associations. The cross-sectional trial recruited 77 women with average age 39 years old with forced expiratory volume in one-second (FEV1) ≥70%. The level of CLA in plasma was assessed by gas chromatography; the expression of the CD markers and HSPs were assessed using flow cytometry; body composition was assessed using bioelectric impedance; and lung functions were assessed using spirometer. Interestingly, the trial revealed significant positive associations between CLA and BW (R=0.4, p<0.001), BMI (R=0.4, P<0.001) and TBF (R=0.34, P<0.001) in the overall population, and in perimenopause women. A significant inverse correlation between t10, c12-CLA and TBF was detected in overweight women (R=- 0.42, p<0.05). A significant positive association (R=0.45, P<0.04) was detected between the c9, t11-CLA and percentage peak of flow predicted (PEF %) in postmenopausal women, meanwhile t10, c12-CLA was negatively associated with peak of flow (R=-0.44, P<0.04). CLA was inversely associated with adiponectin in both obese (R=-0.55, p<0.1) and morbidly obese (R=0.48, P<0.004) women. C9, t11-CLA was positively associated with the expression of HSPA1A inside the lymphocytes in postmenopausal women (R=0.58, p=0.04). HSPB1 expression in the monocytes were associated with both c9, t11-CLA (R=0.58, p<0.05) and total CLA (R=0.71, p<0.001). The level of expression of CD11b on the pro-inflammatory monocytes (CD14++ CD16+ ) was negatively associated with CLA (R=-0.36, p<0.05). Ultimately, the study did not provide strong evidence regarding the direct relationship between CLA and obesity markers or lung functions. However, it showed a potential immunomodulatory effect of CLA on obesity-induced chronic inflammation, which subsequently could influence multiple obesity compilations. The lack of strong evidencewas primarily due to the nature of the study design (observational study). Therefore, in chapter 5 a randomised double-blind placebo control trial was conducted, for more powerful evidence based. The aim of the RCT was to look at the effect of 12-week CLA supplementation on obesity, lung function, adipokines and inflammation in obese and overweight women. The RCT recruited 56 overweight and obese women with a mean age of 42 years old, participants were randomly assigned either to receive 4.5gm/day of CLA or placebo (High Oleic Safflower oil). Participants had to attend three clinics at base line, after 6 weeks and after 12 weeks. In each clinic body composition, lung functions and inflammatory markers were assessed. The study revealed a significant 1.8% reduction in %BF in the CLA group compared to the baseline. No significant effect of CLA on the lung functions was detected, however, this study found a significant reduction in the expression of CD11b on the stimulated pro-inflammatory monocytes after 12 weeks compared to baseline in the CLA group. CLA caused a significant reduction in the expression of intracellular HSPA1A in PBMCs at week 12 compared to baseline. The results might suggest a limited anti-obesity effect of CLA, and a potential positive effect on obesity induced chronic inflammation. Ultimately, no evidence was demonstrated on the direct effect of CLA on lung functions or adipokines. The effect of CLA on adhesion molecules and HSPA1A could suggest an indirect impact on the lung function, but more research in clinically diagnosed patients with pulmonary dysfunctions could help to confirm the effect of CLA on the lung function and adipokines.
    • The influence of nicotinamide on the development of neurons

      Griffin, Sile; Pickard, Mark R.; Hawkins, Clive P.; Williams, Adrian C.; Chari, Divya M.; Fricker, Rosemary; Orme, Rowan P.; Keele University, University Hospital of North Staffordshire NHS Trust, University of Birmingham, United Kingdom (2014-09-09)
      A major challenge in translating the promise of stem cell therapies to treat a myriad of neurodegenerative disorders is to rapidly and efficiently direct pluripotent stem cells to generate differentiated neurons. The application of active vitamin metabolites known to function in embryonic development and maintenance in the adult brain such as retinoic acid (vitamin A), ascorbic acid (vitamin C) and calcitriol (vitamin D3) have proven effective in current in-vitro differentiation protocols. Therefore, in this study we investigated whether the biologically active vitamin B3 metabolite, nicotinamide could enhance the differentiation of mouse embryonic stem cells, cultured as monolayers, into mature neurons at either early or late stages of development. Interestingly, nicotinamide elicited a dose-responsive increase in the percentage of neurons when added at an early developmental stage to the cells undergoing differentiation (days 0–7). Nicotinamide (10 mM) increased the proportion of β-III tubulin positive neurons by two fold and concomitantly decreased the total number of cells in culture, measured by quantification of 4′, 6-diamidino-2-phenylindole positive cells. This effect could result from induction of cell-cycle exit and/or selective cell death in non-neural populations. Higher levels of nicotinamide (20 mM) induced cytoxicity and cell death. This study supports previous evidence that vitamins and their metabolites can efficiently direct stem cells into neurons. Current work is focusing on the effect of nicotinamide on the process of neural induction and whether nicotinamide influences the generation of particular neuronal subtypes implicated in neurodegenerative diseases, specifically focusing on midbrain dopamine neurons; towards a therapy for Parkinson's disease.
    • The influence of pH and fluid dynamics on the antibacterial efficacy of 45S5 Bioglass Short title: Antibacterial efficacy of 45S5 Bioglass

      Begum, Saima; Johnson, William Eustace Basil; Worthington, Tony; Martin, Richard; Aston University (IOP Publishing, 2016-02-02)
      In recent years, there has been considerable interest in the potential antibacterial properties that bioactive glasses may possess. However, there have been several conflicting reports on the antibacterial efficacy of 45S5 Bioglass®. Various mechanisms regarding its mode of action have been proposed, such as changes in the environmental pH, increased osmotic pressure, and 'needle-like' sharp glass debris which could potentially damage prokaryotic cell walls and thus inactivate bacteria. In this current study, a systematic investigation was undertaken on the antibacterial efficacy of 45S5 Bioglass® on Escherichia coli NCTC 10538 and Staphylococcus aureus ATCO 6538 under a range of clinically relevant scenarios including varying Bioglass® concentration, direct and indirect contact between Bioglass® and microorganisms, static and shaking incubation conditions, elevated and neutralised pH environments. The results demonstrated that, under elevated pH conditions, Bioglass® particles have no antibacterial effect on S. aureus while a concentration dependent antibacterial effect against E. coli was observed. However, the antibacterial activity ceased when the pH of the media was neutralised. The results of this current study, therefore, suggest that the mechanism of antibacterial activity of Bioglass® is associated with changes in the environmental pH; an environment that is less likely to occur in vivo due to buffering of the system.
    • Interactions between extracellular Hsp72 and blood cells

      Williams, John H. H.; Ireland, H. Elyse; Williams, Helen (University of Liverpool (University of Chester), 2010-12)
      In recent years, compelling evidence has accumulated suggesting heat shock proteins (HSPs) which are generally believed to be localised and functioning mainly within eukaryotic cells as cyto-protective molecular chaperones, are also localised in the extracellular milieu. Depending on their localisation, on the cell surface (membrance-bound or embedded), or in the peripheral circulation, extracellular HSPs may induce apoptotic cell death, or in contrast protect cells from cell damage and/or cell death when exposed to cellular stress, or may even elicit a stimulatory effect on the innate immune response including cell activiation and cytokine secretion. Hence, the localisation of intracellular and extracellular HSPs appears to be critical in determining their roles in terms of stimulating cell death, cyto-protection, or immune activiation under normal physiological conditions and following exposure to stress stimuli. This thesis describes the intracellular expression, up-regulation, and cell surface localisation of endogenous HSPs: HSP27, Hsp60, Hsp72 and Hsp90 by flow cytometry, florescence microscopy and Western blotting, under control conditions and in response to environmental stress using in vitro and ex vivo models with the intention of determining their physiological roles. The ability of extracellularly administered HSPs (Hsp70 and Hsp72) to protect cultured U937 cells in vitro or peripheral primary human leukogytes or erythrocytes ex vivo from various stress stimuli was demonstrated and was found to be dependent on surface binding and/or internalisation via scavenger receptors (SRs) or phosphatidylserine (PS), which could be blocked by receptor specific ligands. Extracellular HSPs were also shown to be able to stimulate an immune response through the induction of U937 monocyte differentiation into macrophages as evidenced through the up-regulation of the surface receptors: CD36, SR-A1 and CD91 analysed by flow cytometry. These proteins were able to stimulate TNF-x and IL-10 production and secretion by U937 macrophages, shown by ELISA, and chemotatic properties were demonstrated using Boyden chambers. The cyto-protective and immune regulatory effects of extracellular HSPs have potential therapeutic value as treatments in a wide variety of clinical situations.
    • Interactions between PP4 and PEA-15 in the regulation of cell proliferation and apoptosis of breast cancer cells

      Mohammed, Hiba N.; Pickard, Mark R.; Mourtada-Maarabouni, Mirna; Keele University, United Kingdom (NCRI Cancer Conference 2015 Abstracts, 2015)
      Background The serine/threonine protein phosphatase 4 (PP4) is recognised to regulate a variety of cellular functions. Our previous work has shown that the catalytic subunit of PP4 (PP4c) promotes cell death and inhibits proliferation in breast cancer cells, suggestive of a role of PP4c as tumour suppressor gene. Phosphoprotein enriched in astrocytes 15 (PEA-15), a member of the death effector domain protein family known to control cell survival, is reported to be regulated by PP4c. The aims of this study were to investigate the involvement of PEA-15 in mediating the effects of PP4c on breast cancer cells. Method PEA-15 phosphorylation was examined by western blot analysis on proteins extracted from MCF7 and MDA-MB-231 cells over-expressing PP4 and PP4 knock down cells. To investigate the role of PEA-15 in mediating the effects of PP4c, MCF7 and MDA-MB-231 were transfected with control (-) siRNA or with three different PEA-15 specific siRNAs. 48 h post-transfection, control cells (transfected with negative control siRNA) and cells transfected with PEA-15 siRNAs were transiently transfected with pcDNA3.1-PP4c expression construct or pcDNA3.1. Cell viability and apoptosis level were assessed post transfection. Results In MCF7 and MDA-MB-231 cells, the phosphorylation state of PEA-15 increased when PP4c expression was suppressed and decreased when PP4c was over-expressed. Over-expression of PP4c in cells transfected with (-) siRNA caused 50% reduction in viability compared to cells transfected with empty vector. Cells transfected with PEA-15 siRNAs showed a decrease in viable cell number and long term survival. However, over-expression of PP4c in these cells did not have any additional effect on the decrease in cell viability. Conclusion These observations suggest that the induction of apoptosis by over-expression of PP4c is mediated, at least in part, by the dephosphorylation of PEA-15. The interactions between PEA-15 and PP4c may therefore be critical in breast cancer tumorigenesis.