• Airlift Bioreactor for Biological Applications with Microbubble Mediated Transport Processes

      Al-Mashhadani, Mahmood K. H.; Wilkinson, Stephen J.; Zimmerman, William B.; University of Chester (Elsevier, 2015-12-01)
      Airlift bioreactors can provide an attractive alternative to stirred tanks, particularly for bioprocesses with gaseous reactants or products. Frequently, however, they are susceptible to being limited by gas-liquid mass transfer and by poor mixing of the liquid phase, particularly when they are operating at high cell densities. In this work we use CFD modelling to show that microbubbles generated by fluidic oscillation can provide an effective, low energy means of achieving high interfacial area for mass transfer and improved liquid circulation for mixing. The results show that when the diameter of the microbubbles exceeded 200 μm, the “downcomer” region, which is equivalent to about 60 % of overall volume of the reactor, is free from gas bubbles. The results also demonstrate that the use of microbubbles not only increases surface area to volume ratio, but also increases mixing efficiency through increasing the liquid velocity circulation around the draft tube. In addition, the depth of downward penetration of the microbubbles into the downcomer increases with decreasing bubbles size due to a greater downward drag force compared to the buoyancy force. The simulated results indicate that the volume of dead zone increases as the height of diffuser location is increased. We therefore hypothesise that poor gas bubble distribution due to the improper location of the diffuser may have a markedly deleterious effect on the performance of the bioreactor used in this work.
    • A barrier and techno-economic analysis of small-scale bCHP (biomass combined heat and power) schemes in the UK.

      Wright, Daniel G.; Dey, Prasanta K.; Brammer, John G.; Aston University (Elsevier, 2014-05-17)
      bCHP (Biomass combined heat and power) systems are highly efficient at smaller-scales when a significant proportion of the heat produced can be effectively utilised for hot water, space heating or industrial heating purposes. However, there are many barriers to project development and this has greatly inhibited deployment in the UK. Project viability is highly subjective to changes in policy, regulation, the finance market and the low cost fossil fuel incumbent. The paper reviews the barriers to small-scale bCHP project development in the UK along with a case study of a failed 1.5 MWel bCHP scheme. The paper offers possible explanations for the project’s failure and suggests adaptations to improve the project resilience. Analysis of the project’s: capital structuring; contract length and bankability; feedstock type and price uncertainty, and; plant oversizing highlight the negative impact of the existing project barriers on project development. The research paper concludes with a discussion on the effects of these barriers on the case study project and this industry more generally. A greater understanding of the techno-economic effects of some barriers for small-scale bCHP schemes is demonstrated within this paper, along with some methods for improving the attractiveness and resilience of projects of this kind.
    • Benchmarking of a micro gas turbine model integrated with post-combustion CO2 capture

      Usman, Ali; Font Palma, Carolina; Nikpey Somehsaraei, Homam; Mansouri Majoumerd, Mohammad; Akram, Muhammad; Finney, Karen N.; Best, Thom; Mohd Said, Nassya B.; Assadi, Mohsen; Pourkashanian, Mohamed; et al. (Elsevier, 2017-03-19)
      The deployment of post-combustion CO2 capture on large-scale gas-fired power plants is currently progressing, hence the integration of the power and capture plants requires a good understanding of operational requirements and limitations to support this effort. This article aims to assist research in this area, by studying a micro gas turbine (MGT) integrated with an amine-based post-combustion CO2 capture unit. Both processes were simulated using two different software tools –IPSEpro and Aspen Hysys, and validated against experimental tests. The two MGT models were benchmarked at the nominal condition, and then extended to part-loads (50 and 80 kWe), prior to their integration with the capture plant at flue gas CO2 concentrations between 5 and 10 mol%. Further, the performance of the MGT and capture plant when gas turbine exhaust gases were recirculated was assessed. Exhaust gas recirculation increases the CO2 concentration, and reduces the exhaust gas flowrate and specific reboiler duty. The benchmarking of the two models revealed that the IPSEpro model can be easily adapted to new MGT cycle modifications since turbine temperatures and rotational speeds respond to reaching temperature limits; whilst a detailed rate-based approach for the capture plant in Hysys resulted in closely aligned simulation results with experimental data.
    • Capsule membranes encapsulated with smart nanogels for facile detection of trace lead(II) ions in water

      Liu, Wen Ying; Ju, Xiao Jie; Faraj, Yousef; He, Fan; Peng, Han Yu; Liu, Yu Qiong; Liu, Zhuang; Wang, Wei; Xie, Rui; Chu, Liang Yin; et al.
      A novel method based on capsule membranes encapsulated with smart nanogels is successfully developed for facilely detecting trace lead(II) (Pb2+) ions, which are hazardous to both human health and the environment because of their toxicity. The capsule membrane system is composed of a semi-permeable calcium alginate membrane and encapsulated poly(N-isopropylacrylamide-co-acryloylamidobenzo-18-crown-6) (PNB) nanogels. The semi-permeable membrane allows Pb2+ ions and water to pass through quickly, but rejects the encapsulated nanogels and polymers totally. As soon as Pb2+ ions appear in the aqueous environment and enter into the capsule, they can be specifically recognized by encapsulated PNB nanogels via forming 18-crown-6/Pb2+ complexes that cause a Pb2+-induced phase transition of PNB nanogels from hydrophobic to hydrophilic state. As a result, the osmotic pressure inside the capsule membrane increases remarkably, and thus the elastic capsule membrane isothermally swells upon the presence of Pb2+ ions in the environmental aqueous solution. The Pb2+-induced swelling degree of the capsule membrane is dependent on the concentration of Pb2+ ions ([Pb2+]) in water. Thus, the [Pb2+] value in water is able to be easily detected by directly measuring the Pb2+-induced isothermal swelling ratio of the capsule membrane, which we demonstrate by using 15 prepared capsule membranes arranged in a line. The Pb2+-induced swelling ratios of the capsule membrane groups are easily observed with the naked eye, and the detection limit of the [Pb2+] in water is 10-9 mol L-1. Such a proposed method provides an easy and efficient strategy for facile detection of trace threat analytes in water.
    • Cholesterol metabolism: A review of how ageing disrupts the biological mechanisms responsible for its regulation

      Morgan, Amy; Mooney, Kathleen M.; Wilkinson, Stephen J.; Pickles, Neil; Mc Auley, Mark T.; University of Chester, Edgehill University (Elsevier, 2016-04-01)
      Cholesterol plays a vital role in the human body as a precursor of steroid hormones and bile acids, in addition to providing structure to cell membranes. Whole body cholesterol metabolism is maintained by a highly coordinated balancing act between cholesterol ingestion, synthesis, absorption, and excretion. The aim of this review is to discuss how ageing interacts with these processes. Firstly, we will present an overview of cholesterol metabolism. Following this, we discuss how the biological mechanisms which underpin cholesterol metabolism are effected by ageing. Included in this discussion are lipoprotein dynamics, cholesterol absorption/synthesis and the enterohepatic circulation/synthesis of bile acids. Moreover, we discuss the role of oxidative stress in the pathological progression of atherosclerosis and also discuss how cholesterol biosynthesis is effected by both the mammalian target of rapamycin and sirtuin pathways. Next, we examine how diet and alterations to the gut microbiome can be used to mitigate the impact ageing has on cholesterol metabolism. We conclude by discussing how mathematical models of cholesterol metabolism can be used to identify therapeutic interventions.
    • Combined heat and power from the intermediate pyrolysis of biomass materials: performance, economics and environmental impact

      Yang, Yang; Brammer, John G.; Wright, Daniel G.; Scott, Jim; Serrano, Clara; Bridgwater, Tony; Aston University; University of Chester (Elsevier, 2017-02-10)
      Combined heat and power from the intermediate pyrolysis of biomass materials offers flexible, on demand renewable energy with some significant advantages over other renewable routes. To maximize the deployment of this technology an understanding of the dynamics and sensitivities of such a system is required. In the present work the system performance, economics and life-cycle environmental impact is analysed with the aid of the process simulation software Aspen Plus. Under the base conditions for the UK, such schemes are not currently economically competitive with energy and char products produced from conventional means. However, under certain scenarios as modelled using a sensitivity analysis this technology can compete and can therefore potentially contribute to the energy and resource sustainability of the economy, particularly in on-site applications with low-value waste feedstocks. The major areas for potential performance improvement are in reactor cost reductions, the reliable use of waste feedstocks and a high value end use for the char by-product from pyrolysis.
    • Combustion of fuel blends containing digestate pyrolysis oil in a multi-cylinder compression ignition engine

      Hossain, Abul K.; Serrano, Clara; Brammer, John G.; Omran, Abdelnasir; Ahmed, F.; Smith, David I.; Davies, Philip A.; Aston University (Elsevier, 2015-12-23)
      Digestate from the anaerobic digestion conversion process is widely used as a farm land fertiliser. This study proposes an alternative use as a source of energy. Dried digestate was pyrolysed and the resulting oil was blended with waste cooking oil and butanol (10, 20 and 30 vol.%). The physical and chemical properties of the pyrolysis oil blends were measured and compared with pure fossil diesel and waste cooking oil. The blends were tested in a multi-cylinder indirect injection compression ignition engine. Engine combustion, exhaust gas emissions and performance parameters were measured and compared with pure fossil diesel operation. The ASTM copper corrosion values for 20% and 30% pyrolysis blends were 2c, compared to 1b for fossil diesel. The kinematic viscosities of the blends at 40 C were 5–7 times higher than that of fossil diesel. Digested pyrolysis oil blends produced lower in-cylinder peak pressures than fossil diesel and waste cooking oil operation. The maximum heat release rates of the blends were approximately 8% higher than with fossil diesel. The ignition delay periods of the blends were higher; pyrolysis oil blends started to combust late and once combustion started burnt quicker than fossil diesel. The total burning duration of the 20% and 30% blends were decreased by 12% and 3% compared to fossil diesel. At full engine load, the brake thermal efficiencies of the blends were decreased by about 3–7% when compared to fossil diesel. The pyrolysis blends gave lower smoke levels; at full engine load, smoke level of the 20% blend was 44% lower than fossil diesel. In comparison to fossil diesel and at full load, the brake specific fuel consumption (wt.) of the 30% and 20% blends were approximately 32% and 15% higher. At full engine load, the CO emission of the 20% and 30% blends were decreased by 39% and 66% with respect to the fossil diesel. Blends CO2 emissions were similar to that of fossil diesel; at full engine load, 30% blend produced approximately 5% higher CO2 emission than fossil diesel. The study concludes that on the basis of short term engine experiment up to 30% blend of pyrolysis oil from digestate of arable crops can be used in a compression ignition engine.
    • Comparative Potential of Natural Gas, Coal and Biomass Fired Power Plant with Post - combustion CO2 Capture and Compression

      Ali, Usman; Font Palma, Carolina; Akram, Muhammad; Agbonghae, Elvis O.; Ingham, Derek B.; Pourkashanian, Mohamed; University of Sheffield, University of Chester, Nigerian National Petroleum Corporation (Elsevier, 2017-06-07)
      The application of carbon capture and storage (CCS) and carbon neutral techniques should be adopted to reduce the CO2 emissions from power generation systems. These environmental concerns have renewed interest towards the use of biomass as an alternative to fossil fuels. This study investigates the comparative potential of different power generation systems, including NGCC with and without exhaust gas recirculation (EGR), pulverised supercritical coal and biomass fired power plants for constant heat input and constant fuel flowrate cases. The modelling of all the power plant cases is realized in Aspen Plus at the gross power output of 800 MWe and integrated with a MEA-based CO2 capture plant and a CO2 compression unit. Full-scale detailed modelling of integrated power plant with a CO2 capture and compression system for biomass fuel for two different cases is reported and compared with the conventional ones. The process performance, in terms of efficiency, emissions and potential losses for all the cases, is analysed. In conclusion, NGCC and NGCC with EGR integrated with CO2 capture and compression results in higher net efficiency and least efficiency penalty reduction. Further, coal and biomass fired power plants integrated with CO2 capture and compression results in higher specific CO2 capture and the least specific losses per unit of the CO2 captured. Furthermore, biomass with CO2 capture and compression results in negative emissions.
    • Computationally modeling lipid metabolism and aging: A mini-review

      Mc Auley, Mark T.; Mooney, Kathleen M.; University of Chester; Edge Hill University (Elsevier, 2014-11-15)
      One of the greatest challenges in biology is to improve the understanding of the mechanisms which underpin aging and how these affect health. The need to better understand aging is amplified by demographic changes, which have caused a gradual increase in the global population of older people. Aging western populations have resulted in a rise in the prevalence of age-related pathologies. Of these diseases, cardiovascular disease is the most common underlying condition in older people. The dysregulation of lipid metabolism due to aging impinges significantly on cardiovascular health. However, the multifaceted nature of lipid metabolism and the complexities of its interaction with aging make it challenging to understand by conventional means. To address this challenge computational modeling, a key component of the systems biology paradigm is being used to study the dynamics of lipid metabolism. This mini-review briefly outlines the key regulators of lipid metabolism, their dysregulation, and how computational modeling is being used to gain an increased insight into this system.
    • Evaluation of the performance and economic viability of a novel low temperature carbon capture process

      Wilson, Paul; Lychnos, George; Clements, Alastair; Michailos, Stavros; Font Palma, Carolina; Diego, Maria E.; Pourkashanian, Mohamed; Howe, Joseph; PMW Technology Ltd; University of Sheffield; University of Chester (Elsevier, 2019-04-22)
      A novel Advanced Cryogenic Carbon Capture (A3C) process is being developed using low cost but high intensity heat transfer to achieve high CO2 capture efficiencies with a much reduced energy consumption and process equipment size. These characteristics, along with the purity of CO2 product and absence of process chemicals, offer the potential for application across a range of sectors. This work presents a techno-economic evaluation for applications ranging from 3% to 35%vol. CO2 content. The A3C process is evaluated against an amine-based CO2 capture process for three applications; an oil-fired boiler, a combined cycle gas turbine (CCGT) and a biogas upgrading plant. The A3C process has shown a modest life cost advantage over the mature MEA technology for the larger selected applications, and substantially lower costs in the smaller biogas application. Enhanced energy recovery and optimization offer significant opportunities for further reductions in cost.
    • Experimental and process modelling study of integration of a micro-turbine with an amine plant

      Agbonghae, Elvis O.; Best, Thom; Finney, Karen N.; Font Palma, Carolina; Hughes, Kevin J.; Pourkashanian, Mohamed; University of Leeds (Elsevier, 2014-12-31)
      An integrated model of a micro-turbine coupled to a CO2 capture plant has been developed with Aspen Plus, and validated with experimental data obtained from a Turbec T100 microturbine at the PACT facilities in the UKCCS Research Centre, Beighton, UK. Monoethanolamine (MEA) was used as solvent and experimental measurements from the CO2 capture plant have been used to validate the steady-state model developed with Aspen Plus®. The optimum liquid/gas ratio and the lean CO2 loading for 90% CO2 capture has been quantified for flue gases with CO2 concentrations ranging from 3 to 8 mol%.
    • Impact of the operating conditions and position of exhaust gas recirculation on the performance of a micro gas turbine

      Ali, Usman; Font Palma, Carolina; Hughes, Kevin J.; Ingham, Derek B.; Ma, Lin; Pourkashanian, Mohamed; University of Chester/University of Leeds (Elsevier, 2015-06-10)
      Gas turbines are a viable and secure option both economically and environmentally for power and heat generation. The process simulation of the micro gas turbine with exhaust gas recirculation (EGR) and its impact on performance is evaluated. This study is further extended to evaluate the effect of the operating conditions and position of the EGR on the performance of the micro gas turbine. The performance analysis for different configurations of the EGR cycle, as well as flue gas condensation temperature, results in the optimized position of EGR at the compressor inlet with partial condensation resulting in the CO2 enhancement to 3.7 mol%.
    • Integrated Oxyfuel Power Plant with Improved CO2 Separation and Compression Technology for EOR application

      Font Palma, Carolina; Errey, Olivia; Corden, Caroline; Chalmers, Hannah; Lucquiaud, Mathieu; Sanchez del Rio, Maria; Jackson, Steve; Medcalf, Daniel; Livesey, Bryony; Gibbins, Jon; et al. (Elsevier, 2016-06-25)
      An integrated advanced supercritical coal-fired oxyfuel power plant with a novel cryogenic CO2 separation and compression technology for high purity CO2 to suit injection for enhanced oil recovery purposes is investigated. The full process is modelled in Aspen Plus® consisting of: an Air Separation Unit (ASU), an Advanced Supercritical Pulverised Fuel (ASC PF) power plant with a bituminous coal as feedstock, a steam cycle, and a Carbon dioxide Purification Unit (CPU). The proposed CPU process accommodates a distillation column with an integrated reboiler duty to achieve a very high purity CO2 product (99.9%) with constrained oxygen levels (100 ppm). This work presents a detailed analysis of the CO2 separation and compression process within the full power plant, including effective heat integration to reduce the electricity output penalty associated with oxyfuel CO2 capture. The results of this analysis are compared with previous studies and indicate that the combined application of process optimisation in the CPU and advanced heat integration with the power plant offer promising results: In this work a high purity CO2 product was achieved while maintaining 90% capture for a net plant efficiency of 38.02% (LHV), compared with a thermal efficiency of 37.76% (LHV) for a reference simulation of an ASC PF oxy-fired plant with advanced heat integration, providing a lower purity CO2 product.
    • Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels

      Yang, Y.; Brammer, John G.; Mahmood, A. S. N.; Hornung, A.; Aston University; Institute Branch Sulzbach-Rosenberg (Elsevier, 2014-07-16)
      This work describes the use of intermediate pyrolysis system to produce liquid, gaseous and solid fuels from pelletised wood and barley straw feedstock. Experiments were conducted in a pilot-scale system and all products were collected and analysed. The liquid products were separated into an aqueous phase and an organic phase (pyrolysis oil) under gravity. The oil yields were 34.1 wt.% and 12.0 wt.% for wood and barley straw, respectively. Analysis found that both oils were rich in heterocyclic and phenolic compounds and have heating values over 24 MJ/kg. The yields of char for both feedstocks were found to be about 30 wt.%, with heating values similar to that of typical sub-bituminous class coal. Gas yields were calculated to be approximately 20 wt.%. Studies showed that both gases had heating values similar to that of downdraft gasification producer gas. Analysis on product energy yields indicated the process efficiency was about 75%.
    • LDL-C levels in older people: Cholesterol Homeostasis and the Free Radical Theory of Ageing Converge

      Mc Auley, Mark T.; Mooney, Kathleen M.; Univeristy of Chester; Edge Hill University (Elsevier, 2017-05-17)
      The cardiovascular disease (CVD) risk factor, low density lipoprotein cholesterol (LDL-C) increases with age, up until the midpoint of life in males and females. However, LDL-C can decrease with age in older men and women. Intriguingly, a recent systematic review also revealed an inverse association between LDL-C levels and cardiovascular mortality in older people; low levels of LDL-C were associated with reduced risk of mortality. Such findings are puzzling and require a biological explanation. In this paper a hypothesis is proposed to explain these observations. We hypothesize that the free radical theory of ageing (FRTA) together with disrupted cholesterol homeostasis can account for these observations. Based on this hypothesis, dysregulated hepatic cholesterol homeostasis in older people is characterised by two distinct metabolic states. The first state accounts for an older person who has elevated plasma LDL-C. This state is underpinned by the FRTA which suggests there is a decrease in cellular antioxidant capacity with age. This deficiency enables hepatic reactive oxidative species (ROS) to induce the total activation of HMG-CoA reductase, the key rate limiting enzyme in cholesterol biosynthesis. An increase in cholesterol synthesis elicits a corresponding rise in LDL-C, due to the downregulation of LDL receptor synthesis, and increased production of very low density lipoprotein cholesterol (VLDL-C). In the second state of dysregulation, ROS also trigger the total activation of HMG-CoA reductase. However, due to an age associated decrease in the activity of cholesterol-esterifying enzyme, acyl CoA: cholesterol acyltransferase, there is restricted conversion of excess free cholesterol (FC) to cholesterol esters. Consequently, the secretion of VLDL-C drops, and there is a corresponding decrease in LDL-C. As intracellular levels of FC accumulate, this state progresses to a pathophysiological condition akin to nonalcoholic fatty liver disease. It is our conjecture this deleterious state has the potential to account for the inverse association between LDL-C level and CVD risk observed in older people.
    • Mathematically modelling the dynamics of cholesterol metabolism and ageing

      Morgan, Amy; Mooney, Kathleen M.; Wilkinson, Stephen J.; Pickles, Neil; Mc Auley, Mark T.; University of Chester, Edgehill University (Elsevier, 2016-07-30)
      Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the UK. This conditionbecomes increasingly prevalent during ageing; 34.1% and 29.8% of males and females respectively, over 75years of age have an underlying cardiovascular problem. The dysregulation of cholesterol metabolism isinextricably correlated with cardiovascular health and for this reason low density lipoprotein cholesterol(LDL-C) and high density lipoprotein cholesterol (HDL-C) are routinely used as biomarkers of CVD risk. Theaim of this work was to use mathematical modelling to explore how cholesterol metabolism is affectedby the ageing process. To do this we updated a previously published whole-body mathematical model ofcholesterol metabolism to include an additional 96 mechanisms that are fundamental to this biologicalsystem. Additional mechanisms were added to cholesterol absorption, cholesterol synthesis, reversecholesterol transport (RCT), bile acid synthesis, and their enterohepatic circulation. The sensitivity of themodel was explored by the use of both local and global parameter scans. In addition, acute cholesterolfeeding was used to explore the effectiveness of the regulatory mechanisms which are responsible formaintaining whole-body cholesterol balance. It was found that our model behaves as a hypo-responderto cholesterol feeding, while both the hepatic and intestinal pools of cholesterol increased significantly.The model was also used to explore the effects of ageing in tandem with three different cholesterolester transfer protein (CETP) genotypes. Ageing in the presence of an atheroprotective CETP genotype,conferring low CETP activity, resulted in a 0.6% increase in LDL-C. In comparison, ageing with a genotypereflective of high CETP activity, resulted in a 1.6% increase in LDL-C. Thus, the model has illustrated theimportance of CETP genotypes such as I405V, and their potential role in healthy ageing.
    • Part-load performance of direct-firing and co-firing of coal and biomass in a power generation system integrated with a CO2 capture and compression system

      Ali, Usman; Akram, Muhammad; Font Palma, Carolina; Ingham, Derek B.; Pourkashanian, Mohamed; University of Sheffield; University of Chester; University of Engineering and Technology (Elsevier, 2017-09-18)
      Bioenergy with Carbon Capture and Storage (BECCS) is recognised as a key technology to mitigate CO2 emissions and achieve stringent climate targets due to its potential for negative emissions. However, the cost for its deployment is expected to be higher than for fossil-based power plants with CCS. To help in the transition to fully replace fossil fuels, co-firing of coal and biomass provide a less expensive means. Therefore, this work examines the co-firing at various levels in a pulverised supercritical power plant with post-combustion CO2 capture, using a fully integrated model developed in Aspen Plus. Co-firing offers flexibility in terms of the biomass resources needed. This work also investigates flexibility within operation. As a result, the performance of the power plant at various part-loads (40%, 60% and 80%) is studied and compared to the baseline at 100%, using a constant fuel flowrate. It was found that the net power output and net efficiency decrease when the biomass fraction increases for constant heat input and constant fuel flow rate cases. At constant heat input, more fuel is required as the biomass fraction is increased; whilst at constant fuel input, derating occurs, e.g. 30% derating of the power output capacity at firing 100% biomass compared to 100% coal. Co-firing of coal and biomass resulted in substantial power derating at each part-load operation.
    • Process simulation and thermodynamic analysis of a micro turbine with post-combustion CO2 capture and exhaust gas recirculation

      Ali, Usman; Best, Thom; Finney, Karen N.; Font Palma, Carolina; Hughes, Kevin J.; Ingham, Derek B.; Pourkashanian, Mohamed; University of Leeds (Elsevier, 2014-12-31)
      With the effects of the emissions from power plants causing global climate change, the trend towards lower emission systems such as natural gas power plant is increasing. In this paper a Turbec T100 micro gas turbine is studied. The system is assessed thermodynamically using a steady-state model; model results of its alteration with exhaust gas recirculation (EGR) are presented in this paper. The process simulation with EGR offers a useful assessment when integrated with post-combustion CO2 capture. The EGR model results in the enrichment of the CO2 which decrease the energy demand of the CO2 capture system.
    • Prospects for petcoke utilization with CO 2 capture in Mexico

      Font Palma, Carolina; Gonzalez Diaz, Abigail; University of Chester; Instituto Nacional de Electricidad y Energías Limpias (INEEL) (Elsevier, 2018-01-31)
      This paper evaluates the introduction of carbon capture and storage (CCS) to Mexico. The gasification technology is presented as a potential alternative to be applied into refinery plants due to high petcoke production. Although economic aspects, such as fuel price and selling CO2, are important in the selection of CCS alternatives, there are other limitations, i.e. water availability and space. In March 2014, Mexico launched its CCS technological roadmap. However, an evaluation of the installation of new CO2-capture ready power plants was not considered. For that reason, this study could be useful to create a technology roadmap that includes the design of CO2 capture plants into refineries and how they will have to operate for CO2 emissions reduction, and taking advantage that most of refineries and petrochemical plants are close to oil fields for enhanced oil recovery (EOR). Integrated gasification combined cycle (IGCC) with CCS was chosen in this paper for power generation using petcoke as feedstock. The emissions of CO2 in kg/kWh could be reduced by 68%.
    • A review of organic waste enrichment for inducing palatability of black soldier fly larvae: Wastes to valuable resources

      Raksasat, Ratchaprapa; Lim, Jun Wei; Kiatkittipong, Worapon; Kiatkittipong, Kunlanan; Ho, Yeek Chia; Lam, Man Kee; Font Palma, Carolina; Zaid, Hayyiratul Fatimah Mohd; Cheng, Chin Kui; Universiti Teknologi PETRONAS; Silpakorn University; King Mongkut's Institute of Technology Ladkrabang; University of Chester; Khalifa University
      The increase of annual organic wastes generated worldwide has become a major problem for many countries since the mismanagement could bring about negative effects on the environment besides, being costly for an innocuous disposal. Recently, insect larvae have been investigated to valorize organic wastes. This entomoremediation approach is rising from the ability of the insect larvae to convert organic wastes into its biomass via assimilation process as catapulted by the natural demand to complete its lifecycle. Among the insect species, black soldier fly or Hermetia illucens is widely researched since the larvae can grow in various environments while being saprophagous in nature. Even though black soldier fly larvae (BSFL) can ingest various decay materials, some organic wastes such as sewage sludge or lignocellulosic wastes such as waste coconut endosperm are destitute of decent nutrients that could retard the BSFL growth. Hence, blending with nutrient-rich low-cost substrates such as palm kernel expeller, soybean curd residue, etc. is employed to fortify the nutritional contents of larval feeding substrates prior to administering to the BSFL. Alternatively, microbial fermentation can be adopted to breakdown the lignocellulosic wastes, exuding essential nutrients for growing BSFL. Upon reaching maturity, the BSFL can be harvested to serve as the protein and lipid feedstock. The larval protein can be made into insect meal for farmed animals, whilst the lipid source could be extracted and transesterified into larval biodiesel to cushion the global energy demands. Henceforth, this review presents the influence of various organic wastes introduced to feed BSFL, targeting to reduce wastes and producing biochemicals from mature larvae through entomoremediation. Modification of recalcitrant organic wastes via fermentation processes is also unveiled to ameliorate the BSFL growth. Lastly, the sustainable applications of harvested BSFL biomass are as well covered together with the immediate shortcomings that entail further researches.