• Systems Based Mechanisms of Aging

      Proctor, Carole; Morgan, Amy; Mc Auley, Mark; Newcastle University; University of Chester
      The last number of decades have witnessed an unrelenting global rise in the number of older people. This demographic shift is laudable; however, many older people are burdened by poor health. The main reason so many older people have their healthspan compromised is due to the complex biology which underpins ageing and the diseases which are associated with this intriguing phenomenon. Fortunately, however, in recent years there has been a paradigm shift within biological research which has seen the emergence of systems biology. In contrast to a reductionist approach which was commonplace in biological research for many years, systems biology seeks to understand biological systems in an integrated manner. Investigating ageing and age related disease in this way is becoming increasingly effective. In this article we discuss the methods which underpin systems and provide examples of their application to biogerontology research.
    • Production of Biomethane from Agricultural Waste Using a Cryogenic Carbon Capture Process

      Font Palma, Carolina; Lychnos, George; Willson, Paul; University of Chester; PMW Technology Limited (Energy Proceedings, 2019)
      This paper evaluates a novel cryogenic carbon capture process to upgrade biogas produced from agricultural waste. The A3C cryogenic process offers simplicity and compactness with lower capital and operating costs compared to many alternative processes. The work addresses potential technical issues presented by trace contaminants in the raw biogas including hydrogen sulphide, organics and siloxanes. It is found that the A3C process offers high CO2 removal with minimal biomethane losses while requiring simple raw gas treatment.
    • Effects of obesity on cholesterol metabolism and its implications for healthy ageing.

      Mc Auley, Mark Tomás; University of Chester (Cambridge University Press, 2020-01-27)
      The last few decades have witnessed a global rise in the number of older people. Despite this demographic shift, morbidity within this population group is high. Many factors influence healthspan; however an obesity pandemic is emerging as a significant determinant of older peoples’ health. It is well established obesity adversely effects several metabolic systems. However, due to its close association with overall cardiometabolic health, the impact obesity has on cholesterol metabolism needs to be recognised. The aim of this review is to critically discuss the effects obesity has on cholesterol metabolism and to reveal its significance for healthy ageing.
    • Computer Modelling for Nutritionists

      Mc Auley, Mark Tomás; University of Chester
      This book is about computational modelling of nutrient focused biological systems. The book is aimed at students, researchers, and those with an interest in learning how to build a computational model. The book is the product of many years of teaching computational modelling to undergraduates, postgraduates, and researchers with limited, or no background in computational modelling. What I learned from these experiences is those new to modelling are invariably apprehensive about it, and approach it with a degree of trepidation, or even scepticism. However, from tentative initial steps, they quickly realize that modelling is not as challenging, or as academically intimidating as they initially perceive it; and after gaining familiarity with the essential components of model building they rapidly become cognisant, that it offers an alternative lens to view a biological system, and learn new insights about its underlying dynamic behaviour. In this book I provide a practical introduction to modelling, for those who are interested in exploring the dynamics of nutrient based systems. My rationale for undertaking this project is based on my experience of interacting with nutritionists in recent years. As a result of many fruitful discussions I identified a growing need for a book of this nature, which is specifically tailored to nutritionists. My aims are to provide the reader with a solid grounding in computational modelling, and how it dovetails within the burgeoning field of systems biology. For the reader this will involve learning how a model is assembled, what software tools are available for model building, what the different paradigms are for simulating a model, and how to analyse and interpret the output from in silico simulations. The only expectation I make of you, as a reader, is that you are enthusiastic about learning how to use new software tools. In exchange for your engagement I will provide you with ample practical exercises, which will help to consolidate your learning, and will make your computational modelling journey a rewarding and enjoyable experience.
    • Evaluation of a Micro Gas Turbine With Post-Combustion CO2 Capture for Exhaust Gas Recirculation Potential With Two Experimentally Validated Models

      Nikpey Somehsaraei, Homam; Ali, Usman; Font-Palma, Carolina; Mansouri Majoumerd, Mohammad; Akram, Muhammad; Pourkashanian, Mohamed; Assadi, Mohsen (American Society of Mechanical Engineers, 2017-08-17)
      The growing global energy demand is facing concerns raised by increasing greenhouse gas emissions, predominantly CO2. Despite substantial progress in the field of renewable energy in recent years, quick balancing responses and back-up services are still necessary to maintain the grid load and stability, due to increased penetration of intermittent renewable energy sources, such as solar and wind. In a scenario of natural gas availability, gas turbine power may be a substitute for back-up/balancing load. Rapid start-up and shut down, high ramp rate, and low emissions and maintenance have been achieved in commercial gas turbine cycles. This industry still needs innovative cycle configurations, e.g. exhaust gas recirculation (EGR), to achieve higher system performance and lower emissions in the current competitive power generation market. Together with reduced NOx emissions, EGR cycle provides an exhaust gas with higher CO2 concentration compared to the simple gas turbine/combined cycle, favorable for post-combustion carbon capture. This paper presents an evaluation of EGR potential for improved gas turbine cycle performance and integration with a post-combustion CO2 capture process. It also highlights features of two software tools with different capabilities for performance analysis of gas turbine cycles, integrated with post-combustion capture. The study is based on a combined heat and power micro gas turbine (MGT), Turbec T100, of 100kWe output. Detailed models for the baseline MGT and amine capture plant were developed in two software tools, IPSEpro and Aspen Hysys. These models were validated against experimental work conducted at the UK PACT National Core Facilities. Characteristics maps for the compressor and the turbine were used for the MGT modeling. The performance indicators of systems with and without EGR, and when varying the EGR ratio and ambient temperature, were calculated and are presented in this paper.
    • Aging and Cholesterol Metabolism

      Mc Auley, Mark T.; University of Chester (Springer, 2019-07-30)
      The role cholesterol metabolism has to play in health span is clear, and monitoring the parameters of cholesterol metabolism is key to aging successfully. The aim of this chapter is to provide a brief overview of the mechanisms which regulate cholesterol in the body, secondly to discuss how aging effects cholesterol metabolism, and thirdly to unveil how systems biology is leading to an improved understanding of the intersection between aging and the dysregulation of cholesterol metabolism.
    • Towards sustainable methanol from industrial CO2 sources

      Douven, Sigrid; Benkoussas, Hana; Font Palma, Carolina; Leonard, Gregoire; University of Liege; University of Chester (Walter de Gruyter GmbH, 2019-10-21)
      This chapter discusses the opportunity of using CO2 from industrial sources to produce sustainable methanol. Some important industrial sectors that could be seen as potential sources of CO2 are reviewed: ammonia, steel, ethanol, ethylene, natural gas, cement and power industries. In most cases, despite a promising potential for CO2 re-use, only few projects have been identified and methanol production from CO2 is still marginal. A model for the CO2-to-methanol process is presented based on CO2-rich gas coming from ammonia production process. This model takes into account the different steps from the CO2 capture to the methanol purification, and heat integration is performed in order to determine the reduction of heat consumption achievable for the global process. Even if the economic relevance of the CO2 re-use into methanol still has to be qualified, it offers an estimation of the process efficiency.
    • Evaluation of the Performance and Economic Viability of a Novel Low Temperature Carbon Capture Process

      Lychnos, George; Clements, Alastair; Willson, Paul; Font Palma, Carolina; Diego, Maria E.; Pourkashanian, Mohamed; Howe, Joseph; PMW Technology Limited; University of Sheffield; University of Chester (SSRN, 2018-10)
      A novel Advanced Cryogenic Carbon Capture (A3C) process is being developed due to its potential to achieve high CO2 capture efficiencies using low cost but high intensity heat transfer to deliver a much reduced energy consumption and process equipment size. These characteristics, along with the absence of process chemicals, offer the potential for application across a range of sectors. This work presents a techno-economic evaluation for applications ranging from 3% to 30% CO2 content.
    • Experimental Exploration of CO2 Capture Using a Cryogenic Moving Packed Bed

      Cann, David; Willson, Paul; Font Palma, Carolina; University of Chester; PMW Technology Ltd; University of Chester (SSRN, 2018-10)
      This study examines a novel cryogenic post-combustion capture process, based on a moving bed of cold beads to freeze CO2 out of a flue gas, and this paper presents the first steps in experimental work. The preliminary experiments included the test of fluidization of bed material, if the flow rate of bed material can be kept constant in and out of the column and the estimation of heat transfer coefficient. The obtained results are encouraging for the running of the rig at cryogenic conditions.
    • Methods for the Treatment of Cattle Manure—A Review

      Font Palma, Carolina (MDPI, 2019-05-15)
      Environmental concerns, caused by greenhouse gases released to the atmosphere and overrunning of nutrients and pathogens to water bodies, have led to reducing direct spread onto the land of cattle manure. In addition, this practice can be a source of water and air pollution and toxicity to life by the release of undesirable heavy metals. Looking at the current practices, it is evident that most farms separate solids for recycling purposes, store slurries in large lagoons or use anaerobic digestion to produce biogas. The review explores the potential for cattle manure as an energy source due to its relatively large calorific value (HHV of 8.7–18.7 MJ/kg dry basis). This property is beneficial for thermochemical conversion processes, such as gasification and pyrolysis. This study also reviews the potential for upgrading biogas for transportation and heating use. This review discusses current cattle manure management technologies—biological treatment and thermochemical conversion processes—and the diverse physical and chemical properties due to the differences in farm practices.
    • Evaluation of the performance and economic viability of a novel low temperature carbon capture process

      Wilson, Paul; Lychnos, George; Clements, Alastair; Michailos, Stavros; Font Palma, Carolina; Diego, Maria E.; Pourkashanian, Mohamed; Howe, Joseph; PMW Technology Ltd; University of Sheffield; University of Chester (Elsevier, 2019-04-22)
      A novel Advanced Cryogenic Carbon Capture (A3C) process is being developed using low cost but high intensity heat transfer to achieve high CO2 capture efficiencies with a much reduced energy consumption and process equipment size. These characteristics, along with the purity of CO2 product and absence of process chemicals, offer the potential for application across a range of sectors. This work presents a techno-economic evaluation for applications ranging from 3% to 35%vol. CO2 content. The A3C process is evaluated against an amine-based CO2 capture process for three applications; an oil-fired boiler, a combined cycle gas turbine (CCGT) and a biogas upgrading plant. The A3C process has shown a modest life cost advantage over the mature MEA technology for the larger selected applications, and substantially lower costs in the smaller biogas application. Enhanced energy recovery and optimization offer significant opportunities for further reductions in cost.
    • Acclimation of Microalgae to Wastewater Environments Involves Increased Oxidative Stress Tolerance Activity

      Osundeko, Olumayowa; Dean, Andrew P.; Davies, Helena; Pittman, Jon K.; University of Chester (Oxford Academic, 2014-09-16)
      A wastewater environment can be particularly toxic to eukaryotic microalgae. Microalgae can adapt to these conditions but the specific mechanisms that allow strains to tolerate wastewater environments are unclear. Furthermore, it is unknown whether the ability to acclimate microalgae to tolerate wastewater is an innate or species-specific characteristic. Six different species of microalgae (Chlamydomonas debaryana, Chlorella luteoviridis, Chlorella vulgaris, Desmodesmus intermedius, Hindakia tetrachotoma, Parachlorella kessleri) that had never previously been exposed to wastewater conditions were acclimated over an eight week period in secondary-treated municipal wastewater. With the exception of C. debaryana, acclimation to wastewater resulted in significantly higher growth rate and biomass productivity. With the exception of C. vulgaris, total chlorophyll content was significantly increased in all acclimated strains, while all acclimated strains showed significantly increased photosynthetic activity. The ability of strains to acclimate was species-specific, with two species, C. luteoviridis and P. kessleri, able to acclimate more efficiently to the stress than C. debaryana and D. intermedius. Metabolic fingerprinting of the acclimated and non-acclimated microalgae using Fourier transform infrared spectroscopy was able to differentiate strains on the basis of metabolic responses to the stress. In particular, strains exhibiting greater stress response and altered accumulation of lipids and carbohydrates could be distinguished. The acclimation to wastewater tolerance was correlated with higher accumulation of carotenoid pigments and increased ascorbate peroxidase activity.
    • Promises and Challenges of Growing Microalgae in Wastewater

      Osundeko, Olumayowa; Ansolia, Preeti; Kumar Gupta, Sanjay; Bag, Pushan; Bajhaiya, Amit K.; University of Manchester (Springer, 2019-01-22)
      Microalgae have been theoretically described as a sustainable feedstock for biofuel production. However, there are still some concerns and obstacles that need to be overcome in order to translate the theoretical promise into commercial and economic success. These obstacles include a high requirement for nutrients and sustainable water source and the identification of affordable cultivation conditions. It has been suggested that growing microalgae in wastewater can potentially offset some of these obstacles. Microalgae can perform a dual role for remediation of nutrient pollutants and biomass production when grown in wastewater. However, there are huge challenges to overcome before this route can be exploited in an economically and environmentally sustainable manner. In the present chapter, the potentials and challenges of growing microalgae in wastewater and its future implications are discussed in detail.
    • Using Mathematical Modelling and Electrochemical Analysis to Investigate Age‐Associated Disease

      McAuley, Mark; Morgan, Amy (University of Chester, 2019-04-02)
      People are living longer. With this rise in life expectancy, a concomitant rise in morbidity in later life is observed; with conditions including cardiovascular disease (CVD), and cancer. However, ageing and the pathogenesis of age related disease, can be difficult to study, as the ageing process is a complex process, which affects multiple systems and mechanisms. The aim of this research was two‐fold. The first aim was to use mathematical modelling to investigate the mechanisms underpinning cholesterol metabolism, as aberrations to this system are associated with an increased risk for CVD. To better understand cholesterol from a mechanistic perspective, a curated kinetic model of whole body cholesterol metabolism, from the BioModels database, was expanded in COPASI, to produce a model with a broader range of mechanisms which underpin cholesterol metabolism. A range of time course data, and local and global parameter scans were utilised to examine the effect of cholesterol feeding, saturated fat feeding, ageing, and cholesterol ester transfer protein (CETP) genotype. These investigations revealed: the model behaved as a hypo‐responder to cholesterol feeding, the robustness of the cholesterol biosynthesis pathway, and the impact CETP can have on healthy ageing. The second aim of this work was to use electrochemical techniques to detect DNA methylation within the engrailed homeobox 1 (EN1) gene promoter, which has been implicated in cancer. Hypermethylation of this gene promoter is often observed in a diseased state. Synthetic DNA, designed to represent methylated and unmethylated variants, were adsorbed onto a gold rotating disk electrode for electrochemical analysis by 1) electrochemical impedance spectroscopy (EIS), 2) cyclic voltammetry (CV) and 3) differential pulse voltammetry (DPV). The technique was then applied to bisulphite modified and asymmetrically amplified DNA from the breast cancer cell line MCF‐7. Results indicated that electrochemical techniques could detect DNA methylation in both synthetic and cancer derived DNA, with EIS producing superiorresults. These non‐traditional techniques ofstudying age related disease were effective for the investigation of cholesterol metabolism and DNA methylation, and this work highlights how these techniques could be used to elucidate mechanisms or diagnose/monitor disease pathogenesis, to reduce morbidity in older people
    • The Interplay Between Cholesterol Metabolism and Intrinsic Ageing

      Mc Auley, Mark T.; University of Chester (SpringerLink, 2018-12-31)
      The last few decades have witnessed remarkable progress in our understanding of ageing. From an evolutionary standpoint it is generally accepted that ageing is a non-adaptive process which is underscored by a decrease in the force of natural selection with time. From a mechanistic perspective ageing is characterized by a wide variety of cellular mechanisms, including processes such as cellular senescence, telomere attrition, oxidative damage, molecular chaperone activity, and the regulation of biochemical pathways by sirtuins. These biological findings have been accompanied by an unrelenting rise in both life expectancy and the number of older people globally. However, despite age being recognized demographically as a risk factor for healthspan, the processes associated with ageing are routinely overlooked in disease mechanisms. Thus, a central goal of biogerontology is to understand how diseases such as cardiovascular disease (CVD) are shaped by ageing. This challenge cannot be ignored because CVD is the main cause of morbidity in older people. A worthwhile way to examine how ageing intersects with CVD is to consider the effects ageing has on cholesterol metabolism, because dysregualted cholesterol metabolism is the key factor which underpins the pathology of CVD. The aim of this chapter is to outline a hypothesis which accounts for how ageing intersects with intracellular cholesterol metabolism. Moreover, we discuss the implications of this relationship for the onset of disease in the 'oldest old' (individuals ≥85 years of age). We conclude the chapter by discussing the important role mathematical modelling has to play in improving our understanding of cholesterol metabolism and ageing.
    • Disrupting folate metabolism reduces the capacity of bacteria in exponential growth to develop persisters to antibiotics

      Morgan, Jasmine; Smith, Matthew; Mc Auley, Mark T.; Salcedo-Sora, J. Enrique; Edge Hill University; Liverpool Hope University; University of Chester (Microbiology Society, 2018-11-24)
      Bacteria can survive high doses of antibiotics through stochastic phenotypic diversification. We present initial evidence that folate metabolism could be involved with the formation of persisters. The aberrant expression of the folate enzyme gene fau seems to reduce the incidence of persisters to antibiotics. Folate-impaired bacteria had a lower generation rate for persisters to the antibiotics ampicillin and ofloxacin. Persister bacteria were detectable from the outset of the exponential growth phase in the complex media. Gene expression analyses tentatively showed distinctive profiles in exponential growth at times when bacteria persisters were observed. Levels of persisters were assessed in bacteria with altered, genetically and pharmacologically, folate metabolism. This work shows that by disrupting folate biosynthesis and usage, bacterial tolerance to antibiotics seems to be diminished. Based on these findings there is a possibility that bacteriostatic antibiotics such as anti-folates could have a role to play in clinical settings where the incidence of antibiotic persisters seems to drive recalcitrant infections.
    • The role of DNA methylation in ageing and cancer

      Morgan, Amy; Davies, Trevor J.; Mc Auley, Mark T.; University of Chester (Cambridge University Press, 2018-04-30)
      The aim of the present review paper is to survey the literature related to DNA methylation, and its association with cancer and ageing. The review will outline the key factors, including diet, which modulate DNA methylation. Our rationale for conducting this review is that ageing and diseases, including cancer, are often accompanied by aberrant DNA methylation, a key epigenetic process, which is crucial to the regulation of gene expression. Significantly, it has been observed that with age and certain disease states, DNA methylation status can become disrupted. For instance, a broad array of cancers are associated with promoter-specific hypermethylation and concomitant gene silencing. This review highlights that hypermethylation, and gene silencing, of the EN1 gene promoter, a crucial homeobox gene, has been detected in various forms of cancer. This has led to this region being proposed as a potential biomarker for diseases such as cancer. We conclude the review by describing a recently developed novel electrochemical method that can be used to quantify the level of methylation within the EN1 promoter and emphasise the growing trend in the use of electrochemical techniques for the detection of aberrant DNA methylation.
    • Prospects for petcoke utilization with CO 2 capture in Mexico

      Font Palma, Carolina; Gonzalez Diaz, Abigail; University of Chester; Instituto Nacional de Electricidad y Energías Limpias (INEEL) (Elsevier, 2018-01-31)
      This paper evaluates the introduction of carbon capture and storage (CCS) to Mexico. The gasification technology is presented as a potential alternative to be applied into refinery plants due to high petcoke production. Although economic aspects, such as fuel price and selling CO2, are important in the selection of CCS alternatives, there are other limitations, i.e. water availability and space. In March 2014, Mexico launched its CCS technological roadmap. However, an evaluation of the installation of new CO2-capture ready power plants was not considered. For that reason, this study could be useful to create a technology roadmap that includes the design of CO2 capture plants into refineries and how they will have to operate for CO2 emissions reduction, and taking advantage that most of refineries and petrochemical plants are close to oil fields for enhanced oil recovery (EOR). Integrated gasification combined cycle (IGCC) with CCS was chosen in this paper for power generation using petcoke as feedstock. The emissions of CO2 in kg/kWh could be reduced by 68%.
    • A barrier and techno-economic analysis of small-scale bCHP (biomass combined heat and power) schemes in the UK.

      Wright, Daniel G.; Dey, Prasanta K.; Brammer, John G.; Aston University (Elsevier, 2014-05-17)
      bCHP (Biomass combined heat and power) systems are highly efficient at smaller-scales when a significant proportion of the heat produced can be effectively utilised for hot water, space heating or industrial heating purposes. However, there are many barriers to project development and this has greatly inhibited deployment in the UK. Project viability is highly subjective to changes in policy, regulation, the finance market and the low cost fossil fuel incumbent. The paper reviews the barriers to small-scale bCHP project development in the UK along with a case study of a failed 1.5 MWel bCHP scheme. The paper offers possible explanations for the project’s failure and suggests adaptations to improve the project resilience. Analysis of the project’s: capital structuring; contract length and bankability; feedstock type and price uncertainty, and; plant oversizing highlight the negative impact of the existing project barriers on project development. The research paper concludes with a discussion on the effects of these barriers on the case study project and this industry more generally. A greater understanding of the techno-economic effects of some barriers for small-scale bCHP schemes is demonstrated within this paper, along with some methods for improving the attractiveness and resilience of projects of this kind.
    • Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels

      Yang, Y.; Brammer, John G.; Mahmood, A. S. N.; Hornung, A.; Aston University; Institute Branch Sulzbach-Rosenberg (Elsevier, 2014-07-16)
      This work describes the use of intermediate pyrolysis system to produce liquid, gaseous and solid fuels from pelletised wood and barley straw feedstock. Experiments were conducted in a pilot-scale system and all products were collected and analysed. The liquid products were separated into an aqueous phase and an organic phase (pyrolysis oil) under gravity. The oil yields were 34.1 wt.% and 12.0 wt.% for wood and barley straw, respectively. Analysis found that both oils were rich in heterocyclic and phenolic compounds and have heating values over 24 MJ/kg. The yields of char for both feedstocks were found to be about 30 wt.%, with heating values similar to that of typical sub-bituminous class coal. Gas yields were calculated to be approximately 20 wt.%. Studies showed that both gases had heating values similar to that of downdraft gasification producer gas. Analysis on product energy yields indicated the process efficiency was about 75%.