Show simple item record

dc.contributor.authorMao, Xianwen
dc.contributor.authorBrown, Paul
dc.contributor.authorCervinka, Citrad
dc.contributor.authorHazell, Gavin
dc.contributor.authorLi, Hua
dc.contributor.authorRen, Yinying
dc.contributor.authorChen, Di
dc.contributor.authorAtkin, Rob
dc.contributor.authorEastoe, Julian
dc.contributor.authorGrillo, Isabelle
dc.contributor.authorAgilio, Padua
dc.contributor.authorCosta-Gomes, Mragarida
dc.contributor.authorHatton, Alan
dc.date.accessioned2019-08-19T09:03:48Z
dc.date.available2019-08-19T09:03:48Z
dc.date.issued2019-08-12
dc.identifier.citationMao, X., Brown, P., Cervinka, C., Hazell, G., Li, H., Ren, Y., Chen, D., Atkin, R., Eastoe, J., Grillo, I., Padua, A. A. H., Gomes, M. F. C. & Hatton, T. A. (2019). Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces. Nature Materials.en_US
dc.identifier.issn1476-1122
dc.identifier.doi10.1038/s41563-019-0449-6
dc.identifier.urihttp://hdl.handle.net/10034/622515
dc.description.abstractDriven by the potential applications of ionic liquids (ILs) in many emerging electrochemical technologies, recent research efforts have been directed at understanding the complex ion ordering in these systems, to uncover novel energy storage mechanisms at IL–electrode interfaces. Here, we discover that surface-active ILs (SAILs), which contain amphiphilic structures inducing self-assembly, exhibit enhanced charge storage performance at electrified surfaces. Unlike conventional non amphiphilic ILs, for which ion distribution is dominated by Coulombic interactions, SAILs exhibit significant and competing van der Waals interactions owing to the non-polar surfactant tails, leading to unusual interfacial ion distributions. We reveal that, at an intermediate degree of electrode polarization, SAILs display optimum performance, because the low-charge-density alkyl tails are effectively excluded from the electrode surfaces, whereas the formation of non-polar domains along the surface suppresses undesired overscreening effects. This work represents a crucial step towards understanding the unique interfacial behaviour and electrochemical properties of amphiphilic liquid systems showing long-range ordering, and offers insights into the design principles for high-energy-density electrolytes based on spontaneous self-assembly behaviour.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.relation.urlhttps://www.nature.com/articles/s41563-019-0449-6en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.titleSelf-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfacesen_US
dc.typeArticleen_US
dc.identifier.eissn1476-4660
dc.contributor.departmentCornell University; Massachusetts Institute of Technology; Laboratoire de Chimie, Ecole Normale Supérieure de Lyon; University of Chemistry and Technology; University of Chester; University of Western Australia; Stanford University; University of Bristol; Institut Laue–Langevinen_US
dc.identifier.journalNature Materialsen_US
dc.date.accepted2019-07-01
or.grant.openaccessYesen_US
rioxxterms.funderSTFCen_US
rioxxterms.identifier.project9-12-434en_US
rioxxterms.versionAMen_US
rioxxterms.licenseref.startdate2020-02-12
refterms.dateFCD2019-08-13T12:08:18Z
refterms.versionFCDAM


Files in this item

Thumbnail
Name:
62803_2_merged_1561979200.pdf
Embargo:
2020-02-12
Size:
2.527Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/