Show simple item record

dc.contributor.authorWeng, Zhangzhao*
dc.contributor.authorSong, Chunxiao*
dc.contributor.authorXiong, Zhaoxian*
dc.contributor.authorXue, Hao*
dc.contributor.authorSun, Wenfeng*
dc.contributor.authorZhang, Yan*
dc.contributor.authorYang, Bin*
dc.contributor.authorReece, Michael J.*
dc.contributor.authorYan, Haixue*
dc.date.accessioned2019-05-31T12:31:13Z
dc.date.available2019-05-31T12:31:13Z
dc.date.issued2019-04-06
dc.identifier.citationWeng, Z., Song, C., Xiong, Z., Xue, H., Sun, W., Zhang, Y., Yang, B., Reece, M. J. & Yan, H. (2019). Micro Microstructure and Broadband Dielectric Properties of Zn2SiO4 Ceramics with Nano-sized TiO2 Addition. Ceramics International, 45(10), 13251-13256.en
dc.identifier.issn0272-8842
dc.identifier.doi10.1016/j.ceramint.2019.04.011
dc.identifier.urihttp://hdl.handle.net/10034/622313
dc.description.abstractZn2SiO4 ceramics with nano-sized TiO2 addition (ZST) were synthesized by conventional solid state method. The association between the new composite’s microstructures and dielectric properties reveals that reduced pores, increased density and average grain sizes with increasing sintering temperatures, have contributed to the increased permittivities at kHz and microwave bands; the decrease of the permittivities at 1275 0C is due to the form of twin planes. At the terahertz band, the competition of generating oxygen vacancies and forming them into twin crystallographic shear planes dominates the change of permittivities: the crystallographic shear planes decrease the permittivity at the sintering temperature 12250C and 12500C, and the high-rate generation of oxygen vacancies at 1275 0C increases the permittivities. The ZST ceramics demonstrate stable permittivity and low dielectric losses (<10-3 from 10 kHz to microwave band; and < 10-2 at THz range); and the temperature coefficient of resonant frequency is optimized to close zero. These advanced dielectric properties and low sintering temperature (<13000C) provide the ZST ceramics great potential in designing microwave and THz devices.
dc.language.isoenen
dc.publisherElsevieren
dc.relation.urlhttps://www.sciencedirect.com/science/article/pii/S0272884219308211?via%3Dihuben
dc.rightsCC0 1.0 Universal*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0en
dc.subjectWillemiteen
dc.subjectBroadband dielectric propertiesen
dc.subjectMicrowave ceramicsen
dc.subjectTerahertz (THz)en
dc.titleMicrostructure and broadband dielectric properties of Zn2SiO4 ceramics with nano-sized TiO2 additionen
dc.typeArticleen
dc.contributor.departmentXiamen University; Capital Normal University; University of Chester; Queen Mary, University of London; China Electronic Product Reliability and Environmental Testing Research Instituteen
dc.identifier.journalCeramics International
or.grant.openaccessYesen
rioxxterms.funderUnfundeden_US
rioxxterms.identifier.projectUnfundeden_US
rioxxterms.versionAMen
rioxxterms.versionofrecordhttps://doi.org/10.1016/j.ceramint.2019.04.011
rioxxterms.licenseref.startdate2020-04-06
rioxxterms.publicationdate2019-04-06
dc.dateAccepted2019-04-01
dc.date.deposited2019-05-31


Files in this item

Thumbnail
Name:
Publisher version
Thumbnail
Name:
Nano-sized TiO2AddedZn2SiO4_Re ...
Size:
1.481Mb
Format:
PDF
Request:
Main article

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal