Microstructure and broadband dielectric properties of Zn2SiO4 ceramics with nano-sized TiO2 addition
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
Authors
Weng, ZhangzhaoSong, Chunxiao
Xiong, Zhaoxian
Xue, Hao
Sun, Wenfeng
Zhang, Yan
Yang, Bin
Reece, Michael J.
Yan, Haixue
Affiliation
Xiamen University; Capital Normal University; University of Chester; Queen Mary, University of London; China Electronic Product Reliability and Environmental Testing Research InstitutePublication Date
2019-04-06
Metadata
Show full item recordAbstract
Zn2SiO4 ceramics with nano-sized TiO2 addition (ZST) were synthesized by conventional solid state method. The association between the new composite’s microstructures and dielectric properties reveals that reduced pores, increased density and average grain sizes with increasing sintering temperatures, have contributed to the increased permittivities at kHz and microwave bands; the decrease of the permittivities at 1275 0C is due to the form of twin planes. At the terahertz band, the competition of generating oxygen vacancies and forming them into twin crystallographic shear planes dominates the change of permittivities: the crystallographic shear planes decrease the permittivity at the sintering temperature 12250C and 12500C, and the high-rate generation of oxygen vacancies at 1275 0C increases the permittivities. The ZST ceramics demonstrate stable permittivity and low dielectric losses (<10-3 from 10 kHz to microwave band; and < 10-2 at THz range); and the temperature coefficient of resonant frequency is optimized to close zero. These advanced dielectric properties and low sintering temperature (<13000C) provide the ZST ceramics great potential in designing microwave and THz devices.Citation
Weng, Z., Song, C., Xiong, Z., Xue, H., Sun, W., Zhang, Y., Yang, B., Reece, M. J. & Yan, H. (2019). Micro Microstructure and Broadband Dielectric Properties of Zn2SiO4 Ceramics with Nano-sized TiO2 Addition. Ceramics International, 45(10), 13251-13256.Publisher
ElsevierJournal
Ceramics InternationalType
ArticleLanguage
enISSN
0272-8842ae974a485f413a2113503eed53cd6c53
10.1016/j.ceramint.2019.04.011
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons