Show simple item record

dc.contributor.authorYan, Yubin*
dc.contributor.authorEkaka-A, Enu-Obari N.*
dc.date.accessioned2019-03-11T14:46:12Z
dc.date.available2019-03-11T14:46:12Z
dc.date.issued2011-09-03
dc.identifier.citationYan, Y. & Ekaka-a, Enu-Obari N. (2011). Stabilizing a mathematical model of population system. Journal of the Franklin Institute, 348(2011), 2744-2758. https://doi.org/10.1016/j.jfranklin.2011.08.014en
dc.identifier.issn0016-0032
dc.identifier.doi10.1016/j.jfranklin.2011.08.014
dc.identifier.urihttp://hdl.handle.net/10034/621966
dc.description.abstractIn this paper, we will consider how to stabilize a mathematical model, the Kolmogorov model, of the interactions of an n species population. The Lotka–Volterra model is a particular case of the more general Kolmogorov model. We first identify the unstable steady states of the model, then we use the feedback control based on the solutions of the Riccati equation to stabilize the linearized system. Finally we stabilize the nonlinear system by using the feedback controller obtained in the stabilization of the linearized system. We introduce the backward Euler method to approximate the feedback control nonlinear system and obtain the error estimates. Four numerical examples are given which come from the application areas.
dc.language.isoenen
dc.publisherElsevieren
dc.relation.urlhttps://www.sciencedirect.com/science/article/pii/S0016003211002389en
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subjectfeedback controlen
dc.subjectmathematical modelen
dc.subjectpopulation systemen
dc.subjectstabilizationen
dc.titleStabilizing a mathematical model of population systemen
dc.typeArticleen
dc.contributor.departmentUniversity of Chester, University of Ibadanen
dc.identifier.journalJournal of the Franklin Institute
dc.date.accepted2011-08-26
or.grant.openaccessYesen
rioxxterms.funderunfunded researchen_US
rioxxterms.identifier.projectunfunded researchen_US
rioxxterms.versionAMen
rioxxterms.licenseref.startdate2013-09-03


Files in this item

Thumbnail
Name:
Publisher version
Thumbnail
Name:
paper_ENuYubin_06_01_2011_subm ...
Size:
376.1Kb
Format:
PDF
Request:
main article

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International