Stability of a numerical method for a fractional telegraph equation
dc.contributor.author | Yan, Yubin | * |
dc.contributor.author | Xiao, Jingyu | * |
dc.contributor.author | Ford, Neville J. | * |
dc.date.accessioned | 2019-03-11T14:36:29Z | |
dc.date.available | 2019-03-11T14:36:29Z | |
dc.date.issued | 2012-0-01 | |
dc.identifier.citation | Ford, N. J., Xiao, J. & Yan, Y. (2015). Stability of a Numerical Method for a space-time-fractional telegraph equation. Computational Methods in Applied Mathematics, 12(3), 273-288. | en |
dc.identifier.issn | 1609-4840 | |
dc.identifier.doi | 10.2478/cmam-2012-0009 | |
dc.identifier.uri | http://hdl.handle.net/10034/621965 | |
dc.description.abstract | In this paper, we introduce a numerical method for solving the time-space fractional telegraph equations. The numerical method is based on a quadrature formula approach and a stability condition for the numerical method is obtained. Two numerical examples are given and the stability regions are plotted. | |
dc.language.iso | en | en |
dc.publisher | De Gruyter | en |
dc.relation.url | https://www.degruyter.com/view/j/cmam.2012.12.issue-3/cmam-2012-0009/cmam-2012-0009.xml | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.subject | fractional telegraph equations | en |
dc.subject | finite difference methods | en |
dc.subject | stability regions | en |
dc.title | Stability of a numerical method for a fractional telegraph equation | en |
dc.type | Article | en |
dc.identifier.eissn | 1609-9389 | |
dc.contributor.department | University of Chester, Harbin Institute of Technology | en |
dc.identifier.journal | Computational Methods in Applied Mathematics | |
dc.date.accepted | 2012-03-05 | |
or.grant.openaccess | Yes | en |
rioxxterms.funder | unfunded research | en_US |
rioxxterms.identifier.project | unfunded research | en_US |
rioxxterms.version | AM | en |
rioxxterms.licenseref.startdate | 2013-03-31 | |
rioxxterms.publicationdate | 2012-0-01 |